《计算机应用》唯一官方网站 ›› 2023, Vol. 43 ›› Issue (10): 3136-3141.DOI: 10.11772/j.issn.1001-9081.2022101489
所属专题: 数据科学与技术
收稿日期:
2022-10-11
修回日期:
2023-01-13
接受日期:
2023-01-16
发布日期:
2023-04-12
出版日期:
2023-10-10
通讯作者:
张谢华
作者简介:
杨晓菡(1995—),女,江苏徐州人,硕士研究生,主要研究方向:机器学习、推荐系统基金资助:
Xiaohan YANG, Guosheng HAO, Xiehua ZHANG(), Zihao YANG
Received:
2022-10-11
Revised:
2023-01-13
Accepted:
2023-01-16
Online:
2023-04-12
Published:
2023-10-10
Contact:
Xiehua ZHANG
About author:
YANG Xiaohan, born in 1995, M. S. candidate. Her research interests include machine learning, recommender system.Supported by:
摘要:
协同过滤(CF)算法基于物品之间或用户之间的相似度能实现个性化推荐,然而CF算法普遍存在数据稀疏性的问题。针对用户?物品评分稀疏问题,为使预测更加准确,提出一种基于协同训练与Boosting的协同过滤算法(CFCTB)。首先,利用协同训练将两种CF集成于一个框架,两种CF互相添加置信度高的伪标记样本到对方的训练集中,并利用Boosting加权训练数据辅助协同训练;其次,采用加权集成预测最终的用户评分,有效避免伪标记样本所产生的噪声累加,进一步提高推荐性能。实验结果表明,在4个公开数据集上,所提算法的准确率优于单模型;在稀疏度最高的CiaoDVD数据集上,与面向推荐系统的全局和局部核(GLocal-K)相比,所提算法的平均绝对误差(MAE)降低了4.737%;与ECoRec(Ensemble of Co-trained Recommenders)算法相比,所提算法的均方根误差(RMSE)降低了7.421%。以上结果验证了所提算法的有效性。
中图分类号:
杨晓菡, 郝国生, 张谢华, 杨子豪. 基于协同训练与Boosting的协同过滤算法[J]. 计算机应用, 2023, 43(10): 3136-3141.
Xiaohan YANG, Guosheng HAO, Xiehua ZHANG, Zihao YANG. Collaborative filtering algorithm based on collaborative training and Boosting[J]. Journal of Computer Applications, 2023, 43(10): 3136-3141.
数据集 | 用户数 | 物品数 | 评分数 | 稀疏度/% |
---|---|---|---|---|
ML-100K | 943 | 1 682 | 100 000 | 93.695 |
ml-latest-small | 9 742 | 610 | 100 837 | 98.303 |
Filmtrust | 1 508 | 2 071 | 35 497 | 98.863 |
CiaoDVD | 17 615 | 16 121 | 72 665 | 99.974 |
表1 数据集评分数据统计
Tab. 1 Scoring data statistics of datasets
数据集 | 用户数 | 物品数 | 评分数 | 稀疏度/% |
---|---|---|---|---|
ML-100K | 943 | 1 682 | 100 000 | 93.695 |
ml-latest-small | 9 742 | 610 | 100 837 | 98.303 |
Filmtrust | 1 508 | 2 071 | 35 497 | 98.863 |
CiaoDVD | 17 615 | 16 121 | 72 665 | 99.974 |
算法 | ML-100K | ml-latest-small | Filmtrust | CiaoDVD | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | |||||||||
均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | |
SVD | 0.927 6 | 0.003 9 | 0.731 7 | 0.003 8 | 0.867 3 | 0.002 9 | 0.664 5 | 0.001 2 | 0.786 8 | 0.007 7 | 0.608 3 | 0.007 0 | 0.939 5 | 0.004 9 | 0.725 3 | 0.005 8 |
SVD++ | 0.910 5 | 0.006 0 | 0.714 5 | 0.005 4 | 0.857 2 | 0.003 0 | 0.656 0 | 0.001 9 | 0.783 8 | 0.006 1 | 0.602 5 | 0.006 3 | 0.934 6 | 0.002 8 | 0.717 8 | 0.004 4 |
CFCTB | 0.898 5 | 0.004 8 | 0.702 4 | 0.005 0 | 0.845 2 | 0.004 0 | 0.643 2 | 0.002 6 | 0.772 9 | 0.008 9 | 0.588 5 | 0.008 4 | 0.919 4 | 0.004 4 | 0.699 9 | 0.005 2 |
表2 SVD与SVD++组合下3种推荐算法的性能比较
Tab. 2 Performance comparison of three recommendation algorithms under combination of SVD and SVD++
算法 | ML-100K | ml-latest-small | Filmtrust | CiaoDVD | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | |||||||||
均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | |
SVD | 0.927 6 | 0.003 9 | 0.731 7 | 0.003 8 | 0.867 3 | 0.002 9 | 0.664 5 | 0.001 2 | 0.786 8 | 0.007 7 | 0.608 3 | 0.007 0 | 0.939 5 | 0.004 9 | 0.725 3 | 0.005 8 |
SVD++ | 0.910 5 | 0.006 0 | 0.714 5 | 0.005 4 | 0.857 2 | 0.003 0 | 0.656 0 | 0.001 9 | 0.783 8 | 0.006 1 | 0.602 5 | 0.006 3 | 0.934 6 | 0.002 8 | 0.717 8 | 0.004 4 |
CFCTB | 0.898 5 | 0.004 8 | 0.702 4 | 0.005 0 | 0.845 2 | 0.004 0 | 0.643 2 | 0.002 6 | 0.772 9 | 0.008 9 | 0.588 5 | 0.008 4 | 0.919 4 | 0.004 4 | 0.699 9 | 0.005 2 |
算法 | ML-100K | ml-latest-small | Filmtrust | CiaoDVD | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | |||||||||
均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | |
SVD | 0.932 7 | 0.002 6 | 0.735 2 | 0.003 0 | 0.866 9 | 0.011 6 | 0.666 0 | 0.008 0 | 0.793 9 | 0.007 5 | 0.612 4 | 0.006 0 | 0.930 6 | 0.007 8 | 0.718 5 | 0.007 1 |
KNNBaseline | 0.931 5 | 0.001 8 | 0.732 8 | 0.002 3 | 0.869 7 | 0.010 5 | 0.665 4 | 0.007 5 | 0.816 1 | 0.007 1 | 0.634 1 | 0.002 6 | 0.963 4 | 0.007 3 | 0.729 0 | 0.005 9 |
CFCTB | 0.915 0 | 0.002 7 | 0.719 9 | 0.004 0 | 0.851 7 | 0.006 6 | 0.650 8 | 0.008 5 | 0.784 8 | 0.007 1 | 0.599 1 | 0.003 9 | 0.918 8 | 0.006 9 | 0.701 5 | 0.005 5 |
表3 SVD与KNNBaseline组合下3种推荐算法的性能比较
Tab. 3 Performance comparison of three recommendation algorithms under combination of SVD and KNNBaseline
算法 | ML-100K | ml-latest-small | Filmtrust | CiaoDVD | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | |||||||||
均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | |
SVD | 0.932 7 | 0.002 6 | 0.735 2 | 0.003 0 | 0.866 9 | 0.011 6 | 0.666 0 | 0.008 0 | 0.793 9 | 0.007 5 | 0.612 4 | 0.006 0 | 0.930 6 | 0.007 8 | 0.718 5 | 0.007 1 |
KNNBaseline | 0.931 5 | 0.001 8 | 0.732 8 | 0.002 3 | 0.869 7 | 0.010 5 | 0.665 4 | 0.007 5 | 0.816 1 | 0.007 1 | 0.634 1 | 0.002 6 | 0.963 4 | 0.007 3 | 0.729 0 | 0.005 9 |
CFCTB | 0.915 0 | 0.002 7 | 0.719 9 | 0.004 0 | 0.851 7 | 0.006 6 | 0.650 8 | 0.008 5 | 0.784 8 | 0.007 1 | 0.599 1 | 0.003 9 | 0.918 8 | 0.006 9 | 0.701 5 | 0.005 5 |
算法 | ML-100K | ml-latest-small | Filmtrust | CiaoDVD | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | |||||||||
均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | |
SVD++ | 0.913 0 | 0.003 7 | 0.716 3 | 0.003 4 | 0.867 3 | 0.009 7 | 0.655 2 | 0.005 9 | 0.790 2 | 0.011 6 | 0.607 7 | 0.009 2 | 0.938 4 | 0.008 2 | 0.721 9 | 0.007 1 |
KNNBaseline | 0.925 3 | 0.003 2 | 0.729 8 | 0.002 7 | 0.867 8 | 0.008 2 | 0.662 6 | 0.004 6 | 0.811 5 | 0.015 0 | 0.616 8 | 0.010 7 | 0.975 2 | 0.007 6 | 0.737 6 | 0.005 8 |
CFCTB | 0.897 3 | 0.004 1 | 0.702 9 | 0.003 4 | 0.853 6 | 0.008 9 | 0.645 5 | 0.004 6 | 0.811 5 | 0.015 0 | 0.596 6 | 0.010 4 | 0.925 9 | 0.009 0 | 0.700 5 | 0.008 9 |
表4 SVD++与KNNBaseline组合下3种推荐算法的性能比较
Tab. 4 Performance comparison of three recommendation algorithms under combination of SVD++ and KNNBaseline
算法 | ML-100K | ml-latest-small | Filmtrust | CiaoDVD | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | |||||||||
均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | |
SVD++ | 0.913 0 | 0.003 7 | 0.716 3 | 0.003 4 | 0.867 3 | 0.009 7 | 0.655 2 | 0.005 9 | 0.790 2 | 0.011 6 | 0.607 7 | 0.009 2 | 0.938 4 | 0.008 2 | 0.721 9 | 0.007 1 |
KNNBaseline | 0.925 3 | 0.003 2 | 0.729 8 | 0.002 7 | 0.867 8 | 0.008 2 | 0.662 6 | 0.004 6 | 0.811 5 | 0.015 0 | 0.616 8 | 0.010 7 | 0.975 2 | 0.007 6 | 0.737 6 | 0.005 8 |
CFCTB | 0.897 3 | 0.004 1 | 0.702 9 | 0.003 4 | 0.853 6 | 0.008 9 | 0.645 5 | 0.004 6 | 0.811 5 | 0.015 0 | 0.596 6 | 0.010 4 | 0.925 9 | 0.009 0 | 0.700 5 | 0.008 9 |
算法 | ML-100K | ml-latest-small | Filmtrust | CiaoDVD | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | |||||||||
均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | |
GraphRec | 0.908 6 | 0.002 2 | 0.720 6 | 0.002 3 | 0.873 2 | 0.009 1 | 0.679 9 | 0.010 6 | 0.821 3 | 0.005 9 | 0.637 1 | 0.004 7 | 0.953 2 | 0.008 7 | 0.719 7 | 0.007 4 |
ECoRec | 0.916 1 | 0.007 2 | 0.719 1 | 0.008 9 | 0.840 1 | 0.004 9 | 0.645 9 | 0.003 1 | 0.783 6 | 0.009 8 | 0.613 2 | 0.009 2 | 0.993 1 | 0.006 9 | 0.734 1 | 0.008 1 |
GLocal-K | 0.870 6 | 0.004 9 | 0.679 9 | 0.006 2 | 0.863 4 | 0.011 3 | 0.674 3 | 0.009 4 | 0.788 0 | 0.007 0 | 0.614 9 | 0.003 8 | 0.995 8 | 0.008 2 | 0.734 7 | 0.007 3 |
SSEF | 0.899 9 | 0.006 6 | 0.703 6 | 0.007 0 | 0.845 7 | 0.010 2 | 0.644 2 | 0.008 7 | 0.758 4 | 0.013 6 | 0.589 8 | 0.012 1 | 0.932 3 | 0.009 1 | 0.932 3 | 0.009 1 |
CFCTB | 0.898 5 | 0.004 8 | 0.702 4 | 0.005 0 | 0.845 2 | 0.004 0 | 0.643 2 | 0.002 6 | 0.772 9 | 0.008 9 | 0.588 5 | 0.008 4 | 0.919 4 | 0.004 4 | 0.699 9 | 0.005 2 |
表5 本文算法与半监督集成的推荐算法的性能比较
Tab. 5 Performance comparison between the proposed algorithm and semi-supervised integration based recommendation algorithms
算法 | ML-100K | ml-latest-small | Filmtrust | CiaoDVD | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | |||||||||
均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | 均值 | 标准差 | |
GraphRec | 0.908 6 | 0.002 2 | 0.720 6 | 0.002 3 | 0.873 2 | 0.009 1 | 0.679 9 | 0.010 6 | 0.821 3 | 0.005 9 | 0.637 1 | 0.004 7 | 0.953 2 | 0.008 7 | 0.719 7 | 0.007 4 |
ECoRec | 0.916 1 | 0.007 2 | 0.719 1 | 0.008 9 | 0.840 1 | 0.004 9 | 0.645 9 | 0.003 1 | 0.783 6 | 0.009 8 | 0.613 2 | 0.009 2 | 0.993 1 | 0.006 9 | 0.734 1 | 0.008 1 |
GLocal-K | 0.870 6 | 0.004 9 | 0.679 9 | 0.006 2 | 0.863 4 | 0.011 3 | 0.674 3 | 0.009 4 | 0.788 0 | 0.007 0 | 0.614 9 | 0.003 8 | 0.995 8 | 0.008 2 | 0.734 7 | 0.007 3 |
SSEF | 0.899 9 | 0.006 6 | 0.703 6 | 0.007 0 | 0.845 7 | 0.010 2 | 0.644 2 | 0.008 7 | 0.758 4 | 0.013 6 | 0.589 8 | 0.012 1 | 0.932 3 | 0.009 1 | 0.932 3 | 0.009 1 |
CFCTB | 0.898 5 | 0.004 8 | 0.702 4 | 0.005 0 | 0.845 2 | 0.004 0 | 0.643 2 | 0.002 6 | 0.772 9 | 0.008 9 | 0.588 5 | 0.008 4 | 0.919 4 | 0.004 4 | 0.699 9 | 0.005 2 |
1 | REN Y, LI G, ZHANG J, et al. The efficient imputation method for neighborhood-based collaborative filtering[C]// Proceedings of the 21st ACM International Conference on Information and Knowledge Management. New York: ACM, 2012: 684-693. 10.1145/2396761.2396849 |
2 | BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[C]// Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 1998: 43-52. |
3 | GONG J, WANG S, WANG J, et al. Attentional graph convolutional networks for knowledge concept recommendation in MOOCs in a heterogeneous view[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 79-88. 10.1145/3397271.3401057 |
4 | RASHED A, GRABOCKA J, SCHMIDT-THIEME L. Attribute-aware non-linear co-embeddings of graph features[C]// Proceedings of the 13th ACM Conference on Recommender Systems. New York: ACM, 2019: 314-321. 10.1145/3298689.3346999 |
5 | ZHU K, XIAO Y, ZHENG W, et al. A novel context-aware mobile application recommendation approach based on users behavior trajectories[J]. IEEE Access, 2021, 9: 1362-1375. 10.1109/access.2020.3046654 |
6 | 顾军华,樊帅,李宁宁,等. 基于知识图偏好注意力网络的长短期推荐模型及其更新方法[J]. 计算机应用, 2022, 42(4): 1079-1086. 10.11772/j.issn.1001-9081.2021071242 |
GU J H, FAN S, LI N N, et al. Long- and short-term recommendation model and updating method based on knowledge graph preference attention network[J]. Journal of Computer Applications, 2022, 42(4): 1079-1086. 10.11772/j.issn.1001-9081.2021071242 | |
7 | KHARRAT F BEN, ELKHLEIFI A, FAIZ R. Recommendation system based contextual analysis of Facebook comment[C]// Proceedings of the IEEE/ACS 13th International Conference of Computer Systems and Applications. Piscataway: IEEE, 2016: 1-6. 10.1109/aiccsa.2016.7945792 |
8 | LIN Y R, SU W H, LIN C H, et al. Clothing recommendation system based on visual information analytics[C]// Proceedings of the 2019 International Automatic Control Conference. Piscataway: IEEE, 2019: 1-6. 10.1109/cacs47674.2019.9024361 |
9 | ENGELEN J E van, HOOS H H. A survey on semi-supervised learning[J]. Machine Learning, 2020, 109(2): 373-440. 10.1007/s10994-019-05855-6 |
10 | COSTA A F DA, MANZATO M G, CAMPELLO R J G B. Boosting collaborative filtering with an ensemble of co-trained recommenders[J]. Expert Systems with Applications, 2019, 115: 427-441. 10.1016/j.eswa.2018.08.020 |
11 | NAN Z H, ZHAO F. Research on semi-supervised recommendation algorithm based on hybrid model[C]// Proceedings of the 2nd International Conference on Machine Learning, Big Data and Business Intelligence. Piscataway: IEEE, 2020: 344-348. 10.1109/mlbdbi51377.2020.00073 |
12 | WU J, SANG X, CUI W. Semi-supervised collaborative filtering ensemble[J]. World Wide Web, 2021, 24(2): 657-673. 10.1007/s11280-021-00866-7 |
13 | SU X, KHOSHGOFTAAR T M. A survey of collaborative filtering techniques[J]. Advances in Artificial Intelligence, 2009, 2009: No.421425. 10.1155/2009/421425 |
14 | KOREN Y. Factor in the neighbors: scalable and accurate collaborative filtering[J]. ACM Transactions on Knowledge Discovery from Data, 2010, 4(1): No.1. 10.1145/1644873.1644874 |
15 | FUNK S. Netflix update: try this at home [EB/OL]. (2006-12-11) [2022-09-01].. 10.1088/2058-7058/24/09/1 |
16 | KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37. 10.1109/mc.2009.263 |
17 | SHI W, WANG L, QIN J. User embedding for rating prediction in SVD++-based collaborative filtering[J]. Symmetry, 2020, 12(1): No.121. 10.3390/sym12010121 |
18 | 张宜浩,朱小飞,徐传运,等. 基于用户评论的深度情感分析和多视图协同融合的混合推荐方法[J]. 计算机学报, 2019, 42(6): 1318-1333. 10.11897/SP.J.1016.2019.01316 |
ZHANG Y H, ZHU X F, XU C Y, et al. Hybrid recommendation approach based on deep sentiment analysis of user reviews and multi-view collaborative fusion[J]. Chinese Journal of Computers, 2019, 42(6): 1318-1333. 10.11897/SP.J.1016.2019.01316 | |
19 | MATUSZYK P, SPILIOPOULOU M. Stream-based semi-supervised learning for recommender systems[J]. Machine Learning, 2017, 106(6): 771-798. 10.1007/s10994-016-5614-4 |
20 | FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139. 10.1006/jcss.1997.1504 |
21 | SCHCLAR A, TSIKINOVSKY A, ROKACH L, et al. Ensemble methods for improving the performance of neighborhood-based collaborative filtering[C]// Proceedings of the 3rd ACM Conference on Recommender Systems. New York: ACM, 2009: 261-264. 10.1145/1639714.1639763 |
22 | BAR A, ROKACH L, SHANI G, et al. Improving simple collaborative filtering models using ensemble methods[C]// Proceedings of the 2013 International Workshop on Multiple Classifier Systems, LNCS 7872. Berlin: Springer, 2013: 1-12. |
23 | HERLOCKER J L, KONSTAN J A, TERVEEN L G, et al. Evaluating collaborative filtering recommender systems[J]. ACM Transactions on Information Systems, 2004, 22(1): 5-53. 10.1145/963770.963772 |
24 | HARPER F M, KONSTAN J A. The MovieLens datasets: history and context[J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5(4): No.19. 10.1145/2827872 |
25 | AHN H J. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem[J]. Information Sciences, 2008, 178(1): 37-51. 10.1016/j.ins.2007.07.024 |
26 | LIU H, HU Z, MIAN A, et al. A new user similarity model to improve the accuracy of collaborative filtering[J]. Knowledge-Based Systems, 2014, 56: 156-166. 10.1016/j.knosys.2013.11.006 |
27 | HIMABINDU T V R, PADMANABHAN V, PUJARI A K. Conformal matrix factorization based recommender system[J]. Information Sciences, 2018, 467: 685-707. 10.1016/j.ins.2018.04.004 |
28 | 杨凯欣,李雅玮. 基于协同过滤算法的移动智能学习平台的开发与设计[J]. 软件工程与应用, 2019, 8(3): 104-114. |
YANG K X, LI Y W. Development and design of mobile intelligent learning platform on collaborative filtering[J]. Software Engineering and Applications, 2019, 8(3): 104-114. | |
29 | HAN S C, LIM T, LONG S, et al. GLocal-K: global and local kernels for recommender systems[C]// Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York: ACM, 2021: 3063-3067. 10.1145/3459637.3482112 |
[1] | 杨兴耀, 陈羽, 于炯, 张祖莲, 陈嘉颖, 王东晓. 结合自我特征和对比学习的推荐模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2704-2710. |
[2] | 周北京, 王海荣, 王怡梦, 张丽丝, 马赫. 图谱嵌入传播的推荐方法[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3252-3259. |
[3] | 潘润超, 虞启山, 熊泓霏, 刘智慧. 基于深度图神经网络的协同推荐算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2741-2746. |
[4] | 田蕾, 葛丽娜. 基于差分隐私的广告推荐算法[J]. 《计算机应用》唯一官方网站, 2023, 43(11): 3346-3350. |
[5] | 于蒙, 何文涛, 周绪川, 崔梦天, 吴克奇, 周文杰. 推荐系统综述[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1898-1913. |
[6] | 张素琪, 王鑫鑫, 佘世耀, 顾军华. 融合多时间尺度和特征加强的知识图谱推荐模型[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1093-1098. |
[7] | 顾军华, 王锐, 李宁宁, 张素琪. 融合协同过滤信息的知识图注意力网络[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1087-1092. |
[8] | 温雯, 梁方宇. 基于用户潜在状态及依赖关系学习的时序行为推荐[J]. 《计算机应用》唯一官方网站, 2022, 42(12): 3756-3762. |
[9] | 陈广福, 王海波, 连雁平. 基于高阶自包含协同过滤的有向网络链路预测[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 3060-3068. |
[10] | 包玄, 陈红梅, 肖清. 融入时间的兴趣点协同推荐算法[J]. 计算机应用, 2021, 41(8): 2406-2411. |
[11] | 吕佳, 鲜焱. 结合改进密度峰值聚类和共享子空间的协同训练算法[J]. 计算机应用, 2021, 41(3): 686-693. |
[12] | 杨丽, 王时绘, 朱博. 基于动态和静态偏好的兴趣点推荐算法[J]. 计算机应用, 2021, 41(2): 398-406. |
[13] | 陈宪聪, 潘微科, 明仲. 面向异构单类协同过滤的阶段式变分自编码器[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3499-3507. |
[14] | 李子龙, 周勇, 鲍蓉, 王洪栋. 优化三元组损失的深度距离度量学习方法[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3480-3484. |
[15] | 李改, 李磊, 张佳强. 融合显/隐式反馈的社会化协同排序推荐算法[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3515-3520. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||