《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (3): 663-670.DOI: 10.11772/j.issn.1001-9081.2023030353
所属专题: 人工智能
• 人工智能 • 下一篇
收稿日期:
2023-04-03
修回日期:
2023-05-08
接受日期:
2023-05-09
发布日期:
2023-05-30
出版日期:
2024-03-10
通讯作者:
徐大鹏
作者简介:
侯新民(1972—),男,山东郓城人,教授,博士,主要研究方向:图论及其应用、复杂网络、图神经网络。
基金资助:
Dapeng XU1(), Xinmin HOU1,2
Received:
2023-04-03
Revised:
2023-05-08
Accepted:
2023-05-09
Online:
2023-05-30
Published:
2024-03-10
Contact:
Dapeng XU
About author:
HOU Xinmin, born in 1972, Ph. D., professor. His research interests include graph theory and its applications, complex network, graph neural network.
Supported by:
摘要:
近年来,研究人员针对图神经网络(GNN)提出了许多改进的模型架构设计,推动了各种预测任务的性能提升。但大多数GNN变体在开始都认为节点的特征同等重要,而实际情况并非如此。针对这个问题,提出一种特征选择方法来改进现有模型,并为数据集选择出重要特征子集。所提方法由特征选择层和标签-特征单独映射两个组件构成。在特征选择层中使用Softmax归一化器和特征“软选择器”进行特征选择,在标签-特征单独映射思想下设计模型结构,为不同的标签选择对应的相关特征子集,并将多个相关特征子集作集合并运算得到最终数据集的重要特征子集。选取图注意力网络(GAT)和GATv2模型为基准模型,将算法应用到基准模型中得到新模型。实验结果表明,所提模型在6个数据集上执行节点分类任务时,准确率相较于基准模型提升了0.83%~8.79%;新模型也为6个数据集选择了对应的重要特征子集,这些重要特征子集的特征数量占各自数据集总特征数的3.94%~12.86%,将重要特征子集作为基准模型的新输入后仍然获得了95%以上的准确率(使用了所有特征),即在保证准确率的基础上减小了模型的规模。可见,所提方法能够提高节点分类准确率,并有效地为数据集选择对应的重要特征子集。
中图分类号:
徐大鹏, 侯新民. 基于网络结构设计的图神经网络特征选择方法[J]. 计算机应用, 2024, 44(3): 663-670.
Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design[J]. Journal of Computer Applications, 2024, 44(3): 663-670.
数据集 | 节点数 | 边数 | 特征维数 | 标签数 | 训练集节点数 | 验证集节点数 | 测试集节点数 | 同质比 |
---|---|---|---|---|---|---|---|---|
Cora | 2 708 | 5 429 | 1 433 | 7 | 140 | 500 | 1 000 | 0.81 |
Citeseer | 3 327 | 4 732 | 3 703 | 6 | 120 | 500 | 1 000 | 0.74 |
Pubmed | 19 717 | 44 338 | 500 | 3 | 60 | 500 | 1 000 | 0.80 |
Cornell | 183 | 295 | 1 703 | 5 | 87 | 59 | 37 | 0.30 |
Texas | 183 | 309 | 1 703 | 5 | 87 | 59 | 37 | 0.11 |
Wisconsin | 251 | 499 | 1 703 | 5 | 120 | 80 | 51 | 0.21 |
表1 实验数据集信息统计
Tab. 1 Statistics of experimental datasets
数据集 | 节点数 | 边数 | 特征维数 | 标签数 | 训练集节点数 | 验证集节点数 | 测试集节点数 | 同质比 |
---|---|---|---|---|---|---|---|---|
Cora | 2 708 | 5 429 | 1 433 | 7 | 140 | 500 | 1 000 | 0.81 |
Citeseer | 3 327 | 4 732 | 3 703 | 6 | 120 | 500 | 1 000 | 0.74 |
Pubmed | 19 717 | 44 338 | 500 | 3 | 60 | 500 | 1 000 | 0.80 |
Cornell | 183 | 295 | 1 703 | 5 | 87 | 59 | 37 | 0.30 |
Texas | 183 | 309 | 1 703 | 5 | 87 | 59 | 37 | 0.11 |
Wisconsin | 251 | 499 | 1 703 | 5 | 120 | 80 | 51 | 0.21 |
模型 | Cora | Citeseer | Pubmed | Cornell | Texas | Wisconsin |
---|---|---|---|---|---|---|
GCN | 81.50 | 70.30 | 79.00 | 58.65 | 61.35 | 54.71 |
DGI | 82.50 | 71.60 | 78.40 | 57.70 | 59.70 | 54.80 |
GCNII | 85.50 | 73.40 | 80.30 | 74.86 | 69.46 | 74.12 |
SEP-N | 84.80 | 72.90 | 80.20 | 57.40 | 60.60 | 61.20 |
GAT | 83.00 | 72.50 | 79.00 | 58.92 | 58.38 | 55.29 |
GATv2 | 82.30 | 72.20 | 78.50 | 57.84 | 61.35 | 54.90 |
FSGAT | 84.40 | 73.10 | 80.50 | 60.00 | 63.51 | 56.67 |
FSGATv2 | 83.20 | 73.00 | 80.70 | 59.46 | 64.60 | 56.08 |
表2 不同模型的节点分类准确率统计 (%)
Tab. 2 Statistics of node classification accuracy for different models
模型 | Cora | Citeseer | Pubmed | Cornell | Texas | Wisconsin |
---|---|---|---|---|---|---|
GCN | 81.50 | 70.30 | 79.00 | 58.65 | 61.35 | 54.71 |
DGI | 82.50 | 71.60 | 78.40 | 57.70 | 59.70 | 54.80 |
GCNII | 85.50 | 73.40 | 80.30 | 74.86 | 69.46 | 74.12 |
SEP-N | 84.80 | 72.90 | 80.20 | 57.40 | 60.60 | 61.20 |
GAT | 83.00 | 72.50 | 79.00 | 58.92 | 58.38 | 55.29 |
GATv2 | 82.30 | 72.20 | 78.50 | 57.84 | 61.35 | 54.90 |
FSGAT | 84.40 | 73.10 | 80.50 | 60.00 | 63.51 | 56.67 |
FSGATv2 | 83.20 | 73.00 | 80.70 | 59.46 | 64.60 | 56.08 |
实际标签 | 预测标签 | |||
---|---|---|---|---|
0 | 1 | 2 | 合计 | |
总计 | 190 | 420 | 390 | 1 000 |
0 | 140 | 16 | 24 | 180 |
1 | 22 | 345 | 46 | 413 |
2 | 28 | 59 | 320 | 407 |
表3 Pubmed在模型FSGAT下的分类混淆矩阵
Tab. 3 Classification confusion matrix of dataset Pubmed under model FSGAT
实际标签 | 预测标签 | |||
---|---|---|---|---|
0 | 1 | 2 | 合计 | |
总计 | 190 | 420 | 390 | 1 000 |
0 | 140 | 16 | 24 | 180 |
1 | 22 | 345 | 46 | 413 |
2 | 28 | 59 | 320 | 407 |
实际标签 | 预测标签 | |||
---|---|---|---|---|
0 | 1 | 2 | 合计 | |
总计 | 197 | 421 | 382 | 1 000 |
0 | 150 | 15 | 15 | 180 |
1 | 23 | 340 | 50 | 413 |
2 | 24 | 66 | 317 | 407 |
表4 Pubmed在模型FSGATv2下的分类混淆矩阵
Tab. 4 Classification confusion matrix of dataset Pubmed under model FSGATv2
实际标签 | 预测标签 | |||
---|---|---|---|---|
0 | 1 | 2 | 合计 | |
总计 | 197 | 421 | 382 | 1 000 |
0 | 150 | 15 | 15 | 180 |
1 | 23 | 340 | 50 | 413 |
2 | 24 | 66 | 317 | 407 |
算法 | Cora | Citeseer | Pubmed | Cornell | Texas | Wisconsin |
---|---|---|---|---|---|---|
GAT_map | 83.30 | 79.30 | 61.62 | 56.27 | ||
GAT_fs | 83.60 | 72.80 | 79.40 | 63.24 | 55.49 | |
GATv2_map | 72.30 | 79.20 | 58.65 | 63.51 | 55.29 | |
GATv2_fs | 82.30 | 79.30 | 59.19 | 62.70 |
表5 消融实验的节点分类准确率统计 (%)
Tab. 5 Statistics of node classification accuracy in ablation experiments
算法 | Cora | Citeseer | Pubmed | Cornell | Texas | Wisconsin |
---|---|---|---|---|---|---|
GAT_map | 83.30 | 79.30 | 61.62 | 56.27 | ||
GAT_fs | 83.60 | 72.80 | 79.40 | 63.24 | 55.49 | |
GATv2_map | 72.30 | 79.20 | 58.65 | 63.51 | 55.29 | |
GATv2_fs | 82.30 | 79.30 | 59.19 | 62.70 |
数据集 | d | 不同模型的节点分类准确率/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GAT_1 | GAT_2 | GAT | GATv2_1 | GATv2_2 | GATv2 | GCN_1 | GCN_2 | GCN | ||||
Cora | 92 | 100 | 1 433 | 82.10 | 81.10 | 83.00 | 79.50 | 80.30 | 82.30 | 79.50 | 79.10 | 81.50 |
Citeseer | 157 | 146 | 3 703 | 72.00 | 70.80 | 72.50 | 70.08 | 71.90 | 72.20 | 68.30 | 68.10 | 70.30 |
Pubmed | 51 | 46 | 500 | 78.50 | 78.20 | 79.00 | 79.40 | 79.60 | 78.50 | 78.10 | 78.10 | 79.00 |
Cornell | 219 | 182 | 1 703 | 55.95 | 54.05 | 58.92 | 58.37 | 58.37 | 57.84 | 58.64 | 59.20 | 58.65 |
Texas | 129 | 158 | 1 703 | 58.91 | 59.46 | 58.38 | 59.45 | 60.80 | 61.35 | 61.08 | 60.81 | 61.35 |
Wisconsin | 137 | 128 | 1 703 | 55.29 | 53.29 | 55.29 | 54.90 | 55.88 | 54.90 | 53.73 | 54.90 | 54.71 |
表6 featuresub在GAT、GATv2和GCN中节点分类准确率统计
Tab. 6 Statistics of featuresub’s node classification accuracy on GAT, GATv2 and GCN
数据集 | d | 不同模型的节点分类准确率/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GAT_1 | GAT_2 | GAT | GATv2_1 | GATv2_2 | GATv2 | GCN_1 | GCN_2 | GCN | ||||
Cora | 92 | 100 | 1 433 | 82.10 | 81.10 | 83.00 | 79.50 | 80.30 | 82.30 | 79.50 | 79.10 | 81.50 |
Citeseer | 157 | 146 | 3 703 | 72.00 | 70.80 | 72.50 | 70.08 | 71.90 | 72.20 | 68.30 | 68.10 | 70.30 |
Pubmed | 51 | 46 | 500 | 78.50 | 78.20 | 79.00 | 79.40 | 79.60 | 78.50 | 78.10 | 78.10 | 79.00 |
Cornell | 219 | 182 | 1 703 | 55.95 | 54.05 | 58.92 | 58.37 | 58.37 | 57.84 | 58.64 | 59.20 | 58.65 |
Texas | 129 | 158 | 1 703 | 58.91 | 59.46 | 58.38 | 59.45 | 60.80 | 61.35 | 61.08 | 60.81 | 61.35 |
Wisconsin | 137 | 128 | 1 703 | 55.29 | 53.29 | 55.29 | 54.90 | 55.88 | 54.90 | 53.73 | 54.90 | 54.71 |
数据集 | 选择的特征数量 | 准确率/% |
---|---|---|
Cora | 225 | 68.20 |
Citeseer | 450 | 57.70 |
Pubmed | 105 | 66.80 |
Cornell | 255 | 48.85 |
Texas | 255 | 50.10 |
Wisconsin | 255 | 43.20 |
表7 文献[26]的节点分类准确率统计
Tab. 7 Statistics of node classification accuracy in literature [26]
数据集 | 选择的特征数量 | 准确率/% |
---|---|---|
Cora | 225 | 68.20 |
Citeseer | 450 | 57.70 |
Pubmed | 105 | 66.80 |
Cornell | 255 | 48.85 |
Texas | 255 | 50.10 |
Wisconsin | 255 | 43.20 |
1 | SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model [J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80. 10.1109/tnn.2008.2005605 |
2 | SCARSELLI F, TSOI A C, GORI M, et al. Graphical-based learning environments for pattern recognition [C]// Proceedings of the 2004 Structural, Syntactic, and Statistical Pattern Recognition. Cham: Springer, 2004: 42-56. 10.1007/978-3-540-27868-9_4 |
3 | ZHOU F, CAO C, ZHANG K, et al. Meta-GNN: on few-shot node classification in graph meta-learning [C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 2357-2360. 10.1145/3357384.3358106 |
4 | HANG M, NEVILLE J, RIBEIRO B. A collective learning framework to boost GNN expressiveness for node classification [EB/OL]. [2023-01-11]. . |
5 | CHEN M, WEI Z, HUANG Z, et al. Simple and deep graph convolutional networks [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 1725-1735. |
6 | ZHAO T, ZHANG X, WANG S. GraphSMOTE: imbalanced node classification on graphs with graph neural networks [C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 833-841. 10.1145/3437963.3441720 |
7 | WU W, LI B, LUO C, et al. Hashing-accelerated graph neural networks for link prediction [C]// Proceedings of the 2021 Web Conference. New York: ACM, 2021: 2910-2920. 10.1145/3442381.3449884 |
8 | YING R, HE R, CHEN K, et al. Graph convolutional neural networks for web-scale recommender systems [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 974-983. 10.1145/3219819.3219890 |
9 | ZHANG M, CHEN Y. Link prediction based on graph neural networks [C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 5171-5181. |
10 | WU B, YANG X, PAN S, et al. Adapting membership inference attacks to GNN for graph classification: approaches and implications [C]// Proceedings of the 2021 IEEE International Conference on Data Mining. Piscataway: IEEE, 2021: 1421-1426. 10.1109/icdm51629.2021.00182 |
11 | LE T, BERTOLINI M, NOÉ F, et al. Parameterized hypercomplex graph neural networks for graph classification [C]// Proceedings of the 30th International Conference on Artificial Neural Networks. Berlin: Springer, 2021: 204-216. 10.1007/978-3-030-86365-4_17 |
12 | MA H, BIAN Y, RONG Y, et al. Multi-view graph neural networks for molecular property prediction [EB/OL]. (2020-06-12) [2022-04-21]. . 10.1093/bioinformatics/btac039 |
13 | MENG Y, ZONG S, LI X, et al. GNN-LM: language modeling based on global contexts via GNN [EB/OL]. (2022-05-04) [2022-10-11]. . |
14 | MAURYA S K, LIU X, MURATA T. Graph neural networks for fast node ranking approximation [J]. ACM Transactions on Knowledge Discovery from Data, 2021, 15(5): 78. 10.1145/3446217 |
15 | WU S, SUN F, ZHANG W, et al. Graph neural networks in recommender systems: a survey [J]. ACM Computing Surveys, 2022, 55(5): 97. 10.1145/3535101 |
16 | ZHANG H, LU G, ZHAN M, et al. Semi-supervised classification of graph convolutional networks with Laplacian rank constraints [J]. Neural Processing Letters, 2022, 54: 2645-2656. 10.1007/s11063-020-10404-7 |
17 | RUIZ L, GAMA F, RIBEIRO A. Gated graph recurrent neural networks [J]. IEEE Transactions on Signal Processing, 2020, 68: 6303-6318. 10.1109/tsp.2020.3033962 |
18 | HAMILTON W L, YING Z, LESKOVEC J. Inductive representation learning on large graphs [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1025-1035. 10.7551/mitpress/11474.003.0014 |
19 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. [2021-06-02]. . |
20 | BRODY S, ALON U, YAHAV E. How attentive are graph attention networks? [EB/OL]. [2022-09-05]. . |
21 | BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate [EB/OL]. (2016-05-19) [2021-03-16]. . 10.1017/9781108608480.003 |
22 | WU J, CHEN X, XU K, et al. Structural entropy guided graph hierarchical pooling [C]// Proceedings of the 39th International Conference on Machine Learning. New York: JMLR.org, 2022: 24017-24030. |
23 | CHENG H, ZHOU J T, TAY W P, et al. Attentive graph neural networks for few-shot learning [C]// Proceedings of the 2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval. Piscataway: IEEE, 2022: 152-157. 10.1109/mipr54900.2022.00033 |
24 | FAN W, LIU K, LIU H, et al. AutoFS: automated feature selection via diversity-aware interactive reinforcement learning[C]// Proceedings of the 2020 IEEE International Conference on Data Mining. Piscataway: IEEE, 2020: 1008-1013. 10.1109/icdm50108.2020.00117 |
25 | ZHAO X, LIU K, FAN W, et al. Simplifying reinforced feature selection via restructured choice strategy of single agent [C]// Proceedings of the 2020 IEEE International Conference on Data Mining. Piscataway: IEEE, 2020: 871-880. 10.1109/icdm50108.2020.00096 |
26 | ACHARYA D B, ZHANG H. Feature selection and extraction for graph neural networks [C]// Proceedings of the 2020 ACM Southeast Conference. New York: ACM, 2020: 252-255. 10.1145/3374135.3385309 |
27 | ABID A, BALIN M F, ZOU J. Concrete autoencoders for differentiable feature selection and reconstruction [EB/OL]. (2019-01-31) [2022-04-25]. . |
28 | BAMA S S, SARAVANAN A. Efficient classification using average weighted pattern score with attribute rank based feature selection [J]. International Journal of Intelligent Systems and Applications, 2019, 11(7): 29-42. 10.5815/ijisa.2019.07.04 |
29 | SREEJA N K, SANKAR A. Pattern matching based classification using ant colony optimization based feature selection [J]. Applied Soft Computing, 2015, 31: 91-102. 10.1016/j.asoc.2015.02.036 |
30 | XIONG S, LIU R, YI C. Graph-AutoFS: auto feature selection in graph neural [C]// Proceedings of the 7th International Conference on Computing and Data Engineering. New York: ACM, 2021: 41-46. 10.1145/3456172.3456191 |
31 | MAURYA S K, LIU X, MURATA T. Improving graph neural networks with simple architecture design [EB/OL]. (2021-05-17) [2021-11-15]. . 10.1145/3446217 |
32 | WANG Y, ZHAO X, XU T, et al. AutoField: automating feature selection in deep recommender systems [C]// Proceedings of the 2022 ACM Web Conference. New York: ACM, 2022: 1977-1986. 10.1145/3485447.3512071 |
33 | ZHU J, YAN Y, ZHAO L, et al. Beyond homophily in graph neural networks: current limitations and effective designs [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 7793-7804. |
34 | SEN P, NAMATA G, BILGIC M, et al. Collective classification in network data[J]. AI Magazine, 2008, 29(3): 93-107. 10.1609/aimag.v29i3.2157 |
35 | PEI H, WEI B, CHANG K C C, et al. Geom-GCN: geometric graph convolutional networks [EB/OL]. (2020-02-14) [2021-03-05]. . |
36 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. (2017-02-22) [2021-05-27]. . 10.48550/arXiv.1609.02907 |
37 | VELICKOVIĆ P, FEDUS W, HAMILTON W L, et al. Deep graph infomax[C/OL]// Proceedings of the 2019 International Conference for Learning Representations. [2023-03-01]. . |
[1] | 潘烨新, 杨哲. 基于多级特征双向融合的小目标检测优化模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2871-2877. |
[2] | 唐廷杰, 黄佳进, 秦进. 基于图辅助学习的会话推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2711-2718. |
[3] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[4] | 王熙源, 张战成, 徐少康, 张宝成, 罗晓清, 胡伏原. 面向手术导航3D/2D配准的无监督跨域迁移网络[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2911-2918. |
[5] | 杨航, 李汪根, 张根生, 王志格, 开新. 基于图神经网络的多层信息交互融合算法用于会话推荐[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2719-2725. |
[6] | 杨兴耀, 陈羽, 于炯, 张祖莲, 陈嘉颖, 王东晓. 结合自我特征和对比学习的推荐模型[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2704-2710. |
[7] | 李顺勇, 李师毅, 胥瑞, 赵兴旺. 基于自注意力融合的不完整多视图聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2696-2703. |
[8] | 黄云川, 江永全, 黄骏涛, 杨燕. 基于元图同构网络的分子毒性预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2964-2969. |
[9] | 杜郁, 朱焱. 构建预训练动态图神经网络预测学术合作行为消失[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2726-2731. |
[10] | 刘禹含, 吉根林, 张红苹. 基于骨架图与混合注意力的视频行人异常检测方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2551-2557. |
[11] | 顾焰杰, 张英俊, 刘晓倩, 周围, 孙威. 基于时空多图融合的交通流量预测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2618-2625. |
[12] | 杨帆, 邹窈, 朱明志, 马振伟, 程大伟, 蒋昌俊. 基于图注意力Transformer神经网络的信用卡欺诈检测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2634-2642. |
[13] | 石乾宏, 杨燕, 江永全, 欧阳小草, 范武波, 陈强, 姜涛, 李媛. 面向空气质量预测的多粒度突变拟合网络[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2643-2650. |
[14] | 陈虹, 齐兵, 金海波, 武聪, 张立昂. 融合1D-CNN与BiGRU的类不平衡流量异常检测[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2493-2499. |
[15] | 杨莹, 郝晓燕, 于丹, 马垚, 陈永乐. 面向图神经网络模型提取攻击的图数据生成方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2483-2492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||