《计算机应用》唯一官方网站 ›› 2024, Vol. 44 ›› Issue (11): 3530-3539.DOI: 10.11772/j.issn.1001-9081.2023111659
收稿日期:
2023-11-29
修回日期:
2024-01-22
接受日期:
2024-02-05
发布日期:
2024-02-29
出版日期:
2024-11-10
通讯作者:
李均利
作者简介:
黄杰(1998—),女,四川成都人,硕士研究生,主要研究方向:复杂网络、进化算法、深度学习
Jie HUANG1, Ruizi WU2, Junli LI1,3()
Received:
2023-11-29
Revised:
2024-01-22
Accepted:
2024-02-05
Online:
2024-02-29
Published:
2024-11-10
Contact:
Junli LI
About author:
HUANG Jie, born in 1998, M. S. candidate. Her research interests include complex networks, evolutionary algorithms, deep learning.摘要:
提升复杂网络的鲁棒性对于网络抵御外部攻击和级联失效具有重要现实意义。现有进化算法在解决网络结构优化问题时存在局限,特别是在收敛性和优化速度方面有待提升。针对这一问题,提出一种新的自适应复杂网络鲁棒性优化算法SU-ANet (SUrrogate-assisted and Adaptive Network optimization algorithm)。为降低鲁棒性计算所带来的巨大时间开销,该算法构建了基于注意力机制的鲁棒性预测器作为离线代理模型,以代替局部搜索算子中频繁的鲁棒性计算;而在进化过程中,为避免陷入局部最优,同时拓宽解空间的搜索范围,算法全面考虑了全局和局部信息;另外,通过设计交叉算子,使每个个体与全局最优候选解和随机个体进行连边互换,以平衡算法的收敛性和多样性;此外,采用参数自适应机制自动调整算子的执行概率,以减少参数设计对算法性能带来的不确定性影响。在人工合成网络和真实网络上的实验结果表明,SU-ANet具有更好的搜索能力和更高的进化效率。
中图分类号:
黄杰, 武瑞梓, 李均利. 高效的自适应复杂网络鲁棒性优化算法[J]. 计算机应用, 2024, 44(11): 3530-3539.
Jie HUANG, Ruizi WU, Junli LI. Efficient adaptive robustness optimization algorithm for complex networks[J]. Journal of Computer Applications, 2024, 44(11): 3530-3539.
网络类型 | 预测误差/10-3 |
---|---|
ER | 3.7 |
SF | 4.6 |
SW | 4.2 |
表1 代理模型针对不同网络类型的预测误差
Tab. 1 Prediction errors of surrogate model for different network types
网络类型 | 预测误差/10-3 |
---|---|
ER | 3.7 |
SF | 4.6 |
SW | 4.2 |
网络 | 算法 | 鲁棒性值 | 运行 时间/103s | 单位优化 时间/102s |
---|---|---|---|---|
ER (DIR) | SU-ANet | 0.335 8 | 6.3 | 8.0 |
GE-SU-EANet | 0.334 1(+) | 6.4 | 8.4 | |
MA | 0.339 1(-) | 40.0 | 49.0 | |
GA | 0.322 9(+) | 6.3 | 9.7 | |
SF (DIR) | SU-ANet | 0.272 5 | 6.5 | 4.8 |
GE-SU-EANet | 0.250 8(+) | 6.2 | 5.5 | |
MA | 0.276 4(≈) | 85.0 | 61.0 | |
GA | 0.228 7(+) | 5.9 | 6.5 | |
SW (DIR) | SU-ANet | 0.372 1 | 6.2 | 10.0 |
GE-SU-EANet | 0.370 8(+) | 6.4 | 11.0 | |
MA | 0.376 4(-) | 41.0 | 67.0 | |
GA | 0.359 3(+) | 5.2 | 12.0 | |
ER (UDR) | SU-ANet | 0.328 7 | 6.1 | 8.3 |
GE-SU-EANet | 0.328 1(≈) | 6.0 | 8.4 | |
MA | 0.332 3(-) | 28.0 | 37.0 | |
GA | 0.307 5(+) | 5.0 | 9.8 | |
SF (UDR) | SU-ANet | 0.243 8 | 5.1 | 5.3 |
GE-SU-EANet | 0.242 7(≈) | 5.9 | 6.2 | |
MA | 0.247 8(-) | 27.0 | 27.0 | |
GA | 0.228 6(+) | 5.1 | 6.3 | |
SW (UDR) | SU-ANet | 0.365 2 | 5.2 | 7.4 |
GE-SU-EANet | 0.365 6(≈) | 6.0 | 8.5 | |
MA | 0.368 0(-) | 29.0 | 40.0 | |
GA | 0.344 1(+) | 3.9 | 8.1 |
表2 人工合成网络实验中的算法性能对比
Tab. 2 Performance comparison of algorithms in synthetic network experiments
网络 | 算法 | 鲁棒性值 | 运行 时间/103s | 单位优化 时间/102s |
---|---|---|---|---|
ER (DIR) | SU-ANet | 0.335 8 | 6.3 | 8.0 |
GE-SU-EANet | 0.334 1(+) | 6.4 | 8.4 | |
MA | 0.339 1(-) | 40.0 | 49.0 | |
GA | 0.322 9(+) | 6.3 | 9.7 | |
SF (DIR) | SU-ANet | 0.272 5 | 6.5 | 4.8 |
GE-SU-EANet | 0.250 8(+) | 6.2 | 5.5 | |
MA | 0.276 4(≈) | 85.0 | 61.0 | |
GA | 0.228 7(+) | 5.9 | 6.5 | |
SW (DIR) | SU-ANet | 0.372 1 | 6.2 | 10.0 |
GE-SU-EANet | 0.370 8(+) | 6.4 | 11.0 | |
MA | 0.376 4(-) | 41.0 | 67.0 | |
GA | 0.359 3(+) | 5.2 | 12.0 | |
ER (UDR) | SU-ANet | 0.328 7 | 6.1 | 8.3 |
GE-SU-EANet | 0.328 1(≈) | 6.0 | 8.4 | |
MA | 0.332 3(-) | 28.0 | 37.0 | |
GA | 0.307 5(+) | 5.0 | 9.8 | |
SF (UDR) | SU-ANet | 0.243 8 | 5.1 | 5.3 |
GE-SU-EANet | 0.242 7(≈) | 5.9 | 6.2 | |
MA | 0.247 8(-) | 27.0 | 27.0 | |
GA | 0.228 6(+) | 5.1 | 6.3 | |
SW (UDR) | SU-ANet | 0.365 2 | 5.2 | 7.4 |
GE-SU-EANet | 0.365 6(≈) | 6.0 | 8.5 | |
MA | 0.368 0(-) | 29.0 | 40.0 | |
GA | 0.344 1(+) | 3.9 | 8.1 |
网络 | 算法 | 鲁棒性值 | 运行 时间/104 | 单位优化 时间/103 |
---|---|---|---|---|
SF(500) | SU-ANet | 0.217 5 | 2.2 | 2.6 |
GE-SU-EANet | 0.205 2(+) | 2.4 | 3.3 | |
MA | 0.222 2(≈) | 3.7 | 4.1 | |
GA | 0.195 3(+) | 1.8 | 2.8 | |
SF(800) | SU-ANet | 0.204 4 | 4.6 | 6.1 |
GE-SU-EANet | 0.190 6(+) | 4.9 | 8.0 | |
MA | 0.209 2(-) | 8.1 | 10.0 | |
GA | 0.178 3(+) | 4.1 | 8.3 | |
SF(1 000) | SU-ANet | 0.194 2 | 7.0 | 12.0 |
GE-SU-EANet | 0.179 2(+) | 7.3 | 16.0 | |
MA | 0.203 8(-) | 11.0 | 16.0 | |
GA | 0.171 9(+) | 6.5 | 18.0 |
表3 算法可扩展性实验中的算法性能对比
Tab. 3 Performance comparison of algorithms in algorithm scalability experiments
网络 | 算法 | 鲁棒性值 | 运行 时间/104 | 单位优化 时间/103 |
---|---|---|---|---|
SF(500) | SU-ANet | 0.217 5 | 2.2 | 2.6 |
GE-SU-EANet | 0.205 2(+) | 2.4 | 3.3 | |
MA | 0.222 2(≈) | 3.7 | 4.1 | |
GA | 0.195 3(+) | 1.8 | 2.8 | |
SF(800) | SU-ANet | 0.204 4 | 4.6 | 6.1 |
GE-SU-EANet | 0.190 6(+) | 4.9 | 8.0 | |
MA | 0.209 2(-) | 8.1 | 10.0 | |
GA | 0.178 3(+) | 4.1 | 8.3 | |
SF(1 000) | SU-ANet | 0.194 2 | 7.0 | 12.0 |
GE-SU-EANet | 0.179 2(+) | 7.3 | 16.0 | |
MA | 0.203 8(-) | 11.0 | 16.0 | |
GA | 0.171 9(+) | 6.5 | 18.0 |
网络 | 算法 | 鲁棒性值 | 运行 时间/103 | 单位优化 时间/102 |
---|---|---|---|---|
USAIR97 | SU-ANet | 0.215 9 | 8.5 | 11.0 |
GE-SU-EANet | 0.208 0(+) | 9.6 | 14.0 | |
MA | 0.243 5(-) | 26.0 | 25.0 | |
GA | 0.189 4(+) | 3.5 | 6.8 | |
POWER-494 | SU-ANet | 0.318 2 | 9.5 | 15.0 |
GE-SU-EANet | 0.314 1(+) | 8.4 | 15.0 | |
MA | 0.327 2(-) | 44.0 | 63.0 | |
GA | 0.292 0(+) | 6.5 | 18.0 |
表4 真实网络实验中的算法性能对比
Tab. 4 Performance comparison of algorithms in real-world network experiments
网络 | 算法 | 鲁棒性值 | 运行 时间/103 | 单位优化 时间/102 |
---|---|---|---|---|
USAIR97 | SU-ANet | 0.215 9 | 8.5 | 11.0 |
GE-SU-EANet | 0.208 0(+) | 9.6 | 14.0 | |
MA | 0.243 5(-) | 26.0 | 25.0 | |
GA | 0.189 4(+) | 3.5 | 6.8 | |
POWER-494 | SU-ANet | 0.318 2 | 9.5 | 15.0 |
GE-SU-EANet | 0.314 1(+) | 8.4 | 15.0 | |
MA | 0.327 2(-) | 44.0 | 63.0 | |
GA | 0.292 0(+) | 6.5 | 18.0 |
1 | GIRVAN M, NEWMAN M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7821-7826. |
2 | HOFMAN J M, SHARMA A, WATTS D J. Prediction and explanation in social systems[J]. Science, 2017, 355(6324): 486-488. |
3 | EBEL H, MIELSCH L I, BORNHOLDT S. Scale-free topology of e-mail networks[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2002, 66(3): No.035103. |
4 | FALOUTSOS M, FALOUTSOS P, FALOUTSOS C. On power-law relationships of the internet topology[M]// NEWMAN M, BARABÁSI A L, WATTS D J. The Structure and Dynamics of Networks. Princeton: Princeton University Press, 2006: 195-206. |
5 | WANDELT S, SHI X, SUN X. Estimation and improvement of transportation network robustness by exploiting communities[J]. Reliability Engineering and System Safety, 2021, 206: No.107307. |
6 | COHEN R, EREZ K, BEN-AVRAHAM D, et al. Breakdown of the internet under intentional attack[J]. Physical Review Letters, 2001, 86(16): No.3682. |
7 | SCHNEIDER C M, MOREIRA A A, ANDRADE J S, Jr., et al. Mitigation of malicious attacks on networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(10): 3838-3841. |
8 | ZENG A, LIU W. Enhancing network robustness against malicious attacks[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2012, 85(6): No.066130. |
9 | BULDYREV S, PARSHANI R, PAUL G, et al. Catastrophic cascade of failures in interdependent networks[J]. Nature, 2010, 464(7291): 1025-1028. |
10 | MERRIS R. Laplacian matrices of graphs: a survey[J]. Linear Algebra and its Applications, 1994, 197/198: 143-176. |
11 | WANG S, LIU J. Constructing robust cooperative networks using a multi-objective evolutionary algorithm[J]. Scientific Reports, 2017, 7: No.41600. |
12 | WANG S, LIU J. Designing comprehensively robust networks against intentional attacks and cascading failures[J]. Information Sciences, 2019, 478: 125-140. |
13 | WANG S, LIU J, JIN Y. Surrogate-assisted robust optimization of large-scale networks based on graph embedding[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(4): 735-749. |
14 | ZHOU M, LIU J. A memetic algorithm for enhancing the robustness of scale-free networks against malicious attacks[J]. Physica A: Statistical Mechanics and its Applications, 2014, 410: 131-143. |
15 | TANG X, LIU J, ZHOU M. Enhancing network robustness against targeted and random attacks using a memetic algorithm[J]. EPL (EuroPhysics Letters), 2015, 111(3): No.38005. |
16 | ZHOU M, LIU J. A two-phase multiobjective evolutionary algorithm for enhancing the robustness of scale-free networks against multiple malicious attacks[J]. IEEE Transactions on Cybernetics, 2017, 47(2): 539-552. |
17 | TANG X, LIU J, HAO X. Mitigate cascading failures on networks using a memetic algorithm[J]. Scientific Reports, 2016, 6: No.38713. |
18 | WANG S, LIU J. Community robustness and its enhancement in interdependent networks[J]. Applied Soft Computing, 2019, 77: 665-677. |
19 | WANG S, LIU J, JIN Y. Robust structural balance in signed networks using a multiobjective evolutionary algorithm[J]. IEEE Computational Intelligence Magazine, 2020, 15(2): 24-35. |
20 | CHEN J, LIU J. A memetic algorithm for optimizing inter-links to enhance the robustness of interdependent networks against malicious attacks[C]// Proceedings of the 2021 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2021: 327-334. |
21 | WANG S, LIU J, JIN Y. A computationally efficient evolutionary algorithm for multiobjective network robustness optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(3): 419-432. |
22 | LOU Y, HE Y, WANG L, et al. Predicting network controllability robustness: a convolutional neural network approach[J]. IEEE Transactions on Cybernetics, 2022, 52(5): 4052-4063. |
23 | LOU Y, HE Y, WANG L, et al. Knowledge-based prediction of network controllability robustness[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(10): 5739-5750. |
24 | LOU Y, WU R, LI J, et al. A learning convolutional neural network approach for network robustness prediction[J]. IEEE Transactions on Cybernetics, 2023, 53(7): 4531-4544. |
25 | LOU Y, WU R, LI J, et al. A convolutional neural network approach to predicting network connectedness robustness[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(4): 3209-3219. |
26 | KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of the 1995 International Conference on Neural Networks — Volume 4. Piscataway: IEEE, 1995: 1942-1948. |
27 | ZHANG J, SANDERSON A C. JADE: adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945-958. |
28 | QIN A K, SUGANTHAN P N. Self-adaptive differential evolution algorithm for numerical optimization[C]// Proceedings of the 2005 IEEE Congress on Evolutionary Computation — Volume 2. Piscataway: IEEE, 2005: 1785-1791. |
29 | LIU J, LAMPINEN J. A fuzzy adaptive differential evolution algorithm[J]. Soft Computing, 2005, 9(6): 448-462. |
30 | BREST J, GREINER S, BOSKOVIC B, et al. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 646-657. |
31 | TEO J. Exploring dynamic self-adaptive populations in differential evolution[J]. Soft Computing, 2006, 10(8): 673-686. |
32 | MOSCATO P. On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms[EB/OL]. [2023-09-12]. . |
33 | LIU J, ABBASS H A, TAN K C. Evolutionary Computation and Complex Networks[M]. Cham: Springer, 2019. |
34 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
35 | ERDÖS P, RÉNYI A. On the evolution of random graphs[M]// NEWMAN M, BARABÁSI A L, WATTS D J. The Structure and Dynamics of Networks. Princeton: Princeton University Press, 2006: 38-82. |
36 | BARABÁSI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. |
37 | WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440-442. |
38 | KRUSKAL W H, WALLIS W A. Use of ranks in one-criterion variance analysis[J]. Journal of the American Statistical Association, 1952, 47(260): 583-621. |
39 | ROSSI R A, AHMED N K. The network data repository with interactive graph analytics and visualization[C]// Proceedings of the 39th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015: 4292-4293. |
[1] | 陈学斌, 任志强, 张宏扬. 联邦学习中的安全威胁与防御措施综述[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1663-1672. |
[2] | 魏凤凤, 陈伟能. 分布式数据驱动的多约束进化优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1393-1400. |
[3] | 田野, 陈津津, 张兴义. 面向约束多目标优化的进化计算与梯度下降联合优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1386-1392. |
[4] | 赵楷文, 王鹏, 童向荣. 基于双阶段搜索的约束进化多任务优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1415-1422. |
[5] | 田茂江, 陈鸣科, 堵威, 杜文莉. 面向大规模重叠问题的两阶段差分分组方法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1348-1354. |
[6] | 张莞婷, 杜文莉, 堵威. 基于多时间尺度协同的大规模原油调度进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1355-1363. |
[7] | 赵佳伟, 陈雪峰, 冯亮, 候亚庆, 朱泽轩, Yew‑Soon Ong. 优化场景视角下的进化多任务优化综述[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1325-1337. |
[8] | 董炜娜, 刘佳, 潘晓中, 陈立峰, 孙文权. 基于编码-解码网络的大容量鲁棒图像隐写方案[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 772-779. |
[9] | 刘勇, 杨锟. 新能源汽车电池回收网点竞争选址模型及算法[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 595-603. |
[10] | 黄亚伟, 钱雪忠, 宋威. 基于双档案种群大小自适应方法的改进差分进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3844-3853. |
[11] | 王中钰, 钱晓东. 基于改进期望最大化算法的供应链网络边连接规则优化[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3386-3395. |
[12] | 张睿, 潘俊铭, 白晓露, 胡静, 张荣国, 张鹏云. 面向深度分类模型超参数自优化的代理模型[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3021-3031. |
[13] | 汪韩, 万源, 王东, 丁义明. 宽度学习系统中鲁棒性权值矩阵组合的筛选方法[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3032-3038. |
[14] | 赵徐炎, 崔允贺, 蒋朝惠, 钱清, 申国伟, 郭春, 李显超. CHAIN:基于重合支配的边缘计算节点放置算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2812-2818. |
[15] | 郭茂祖, 张雅喆, 赵玲玲. 基于空间语义和个体活动的电动汽车充电站选址方法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2819-2827. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||