《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (5): 1464-1471.DOI: 10.11772/j.issn.1001-9081.2024050651
• 人工智能 • 上一篇
收稿日期:
2024-05-22
修回日期:
2024-09-13
接受日期:
2024-09-26
发布日期:
2024-10-08
出版日期:
2025-05-10
通讯作者:
余节约
作者简介:
郭书剑(1999—),女,河北保定人,硕士研究生,主要研究方向:机器学习、数据挖掘基金资助:
Shujian GUO1,2, Jieyue YU1,2(), Xuesong YIN1,2
Received:
2024-05-22
Revised:
2024-09-13
Accepted:
2024-09-26
Online:
2024-10-08
Published:
2025-05-10
Contact:
Jieyue YU
About author:
GUO Shujian, born in 1999, M. S. candidate. Her research interests include machine learning, data mining.Supported by:
摘要:
基于图的子空间聚类(SC)已成为有效处理高维数据的流行技术。然而,现有方法存在以下问题:构建的图忽略了与聚类建立关联以及无法捕捉数据的内在相关结构。为了解决上述问题,提出一个新的SC方法——图正则化弹性网子空间聚类(GENSC)。GENSC使用L2范数正则化强化具有相关结构的样本之间的连通性,并使用L1范数正则化摒弃不同子空间的样本之间的连通性;同时,构建表征的最近邻图捕捉样本之间的内在局部结构,并增加秩约束以鼓励所学习的图具有清晰的聚类结构。GENSC将L2范数、L1范数和秩约束刻画到一个一般的框架中,并提出一个迭代的优化算法来求解该框架。在9个真实数据集上与现有方法进行比较的实验结果表明,在ChinaCXRSet上,GENSC的精确度(Accuracy)和归一化互信息(NMI)值分别超出次优方法9.03和7.61个百分点,聚类纯度(Purity)达到最好;在UMIST上,GENSC的精确度、NMI和Purity值分别超出次优方法4.15、3.17和5.21个百分点,验证了GENSC的有效性。
中图分类号:
郭书剑, 余节约, 尹学松. 图正则化弹性网子空间聚类[J]. 计算机应用, 2025, 45(5): 1464-1471.
Shujian GUO, Jieyue YU, Xuesong YIN. Graph regularized elastic net subspace clustering[J]. Journal of Computer Applications, 2025, 45(5): 1464-1471.
数据集 | 样本量n | 特征量d | 类别数 | |
---|---|---|---|---|
医学图像 | Lung | 203 | 3 312 | 5 |
Carml | 174 | 9 182 | 11 | |
Tuberculosis | 635 | 1 024 | 2 | |
ChinaCXRSet | 662 | 4 096 | 2 | |
111 | 11 340 | 3 | ||
对象图像 | ORL | 400 | 1 024 | 40 |
Grimace | 360 | 4 096 | 18 | |
Zoo | 101 | 16 | 7 | |
UMIST | 575 | 644 | 20 |
表1 数据集说明
Tab. 1 Dataset description
数据集 | 样本量n | 特征量d | 类别数 | |
---|---|---|---|---|
医学图像 | Lung | 203 | 3 312 | 5 |
Carml | 174 | 9 182 | 11 | |
Tuberculosis | 635 | 1 024 | 2 | |
ChinaCXRSet | 662 | 4 096 | 2 | |
111 | 11 340 | 3 | ||
对象图像 | ORL | 400 | 1 024 | 40 |
Grimace | 360 | 4 096 | 18 | |
Zoo | 101 | 16 | 7 | |
UMIST | 575 | 644 | 20 |
算法 | Lung | ORL | |||||||
---|---|---|---|---|---|---|---|---|---|
LRR | 68.47 | 73.00 | 98.05 | 77.58 | 76.22 | 75.24 | 55.13 | 77.03 | 54.95 |
SSC | 86.70 | 50.50 | 90.00 | 77.01 | 73.85 | 54.45 | 28.00 | 67.67 | 53.15 |
LSR | 86.21 | 70.75 | 91.11 | 77.58 | 76.22 | 78.21 | 56.34 | 68.42 | 40.54 |
SSCE | 86.70 | 64.75 | 91.66 | 78.16 | 76.22 | 77.22 | 58.95 | 77.03 | 55.85 |
EnSC | 87.19 | 68.75 | 84.16 | 73.56 | 76.22 | 75.24 | 60.86 | 77.03 | 54.05 |
ALSR | 62.06 | 64.5 | 91.11 | 81.03 | 76.22 | 66.33 | 54.26 | 75.52 | 54.95 |
l0-LRSSC | 79.80 | 71.00 | 92.22 | 84.16 | 76.22 | 78.21 | 55.13 | 77.03 | 55.85 |
LASC | 67.98 | 71.32 | 83.61 | 67.93 | 52.12 | 50.59 | 23.13 | 52.41 | 47.74 |
SSRSC | 79.31 | 64.75 | 91.66 | 78.73 | 76.22 | 71.28 | 49.73 | 77.03 | 56.75 |
GENSC | 89.66 | 79.25 | 99.16 | 81.03 | 78.74 | 83.17 | 69.39 | 86.06 | 57.66 |
表2 10种对比方法在9个数据集上的精确度 ( %)
Tab. 2 Accuracy values of 10 comparison methods on 9 datasets
算法 | Lung | ORL | |||||||
---|---|---|---|---|---|---|---|---|---|
LRR | 68.47 | 73.00 | 98.05 | 77.58 | 76.22 | 75.24 | 55.13 | 77.03 | 54.95 |
SSC | 86.70 | 50.50 | 90.00 | 77.01 | 73.85 | 54.45 | 28.00 | 67.67 | 53.15 |
LSR | 86.21 | 70.75 | 91.11 | 77.58 | 76.22 | 78.21 | 56.34 | 68.42 | 40.54 |
SSCE | 86.70 | 64.75 | 91.66 | 78.16 | 76.22 | 77.22 | 58.95 | 77.03 | 55.85 |
EnSC | 87.19 | 68.75 | 84.16 | 73.56 | 76.22 | 75.24 | 60.86 | 77.03 | 54.05 |
ALSR | 62.06 | 64.5 | 91.11 | 81.03 | 76.22 | 66.33 | 54.26 | 75.52 | 54.95 |
l0-LRSSC | 79.80 | 71.00 | 92.22 | 84.16 | 76.22 | 78.21 | 55.13 | 77.03 | 55.85 |
LASC | 67.98 | 71.32 | 83.61 | 67.93 | 52.12 | 50.59 | 23.13 | 52.41 | 47.74 |
SSRSC | 79.31 | 64.75 | 91.66 | 78.73 | 76.22 | 71.28 | 49.73 | 77.03 | 56.75 |
GENSC | 89.66 | 79.25 | 99.16 | 81.03 | 78.74 | 83.17 | 69.39 | 86.06 | 57.66 |
算法 | Lung | ORL | |||||||
---|---|---|---|---|---|---|---|---|---|
LRR | 51.57 | 86.33 | 98.26 | 77.39 | 20.83 | 61.82 | 72.13 | 22.93 | 26.30 |
SSC | 66.98 | 62.60 | 94.93 | 78.06 | 17.16 | 49.52 | 38.60 | 9.20 | 18.06 |
LSR | 64.42 | 79.67 | 96.60 | 76.69 | 20.83 | 78.32 | 73.30 | 10.05 | 14.79 |
SSCE | 67.65 | 80.08 | 95.62 | 76.29 | 20.83 | 80.07 | 74.15 | 22.29 | 13.41 |
EnSC | 64.72 | 85.28 | 93.38 | 78.31 | 20.83 | 68.03 | 78.91 | 22.29 | 25.79 |
ALSR | 49.29 | 79.64 | 95.26 | 78.86 | 20.83 | 56.36 | 70.09 | 19.71 | 26.41 |
l0-LRSSC | 55.94 | 82.67 | 92.53 | 92.49 | 20.83 | 74.99 | 71.01 | 22.29 | 34.12 |
LASC | 19.16 | 85.11 | 46.02 | 37.72 | 16.47 | 46.06 | 30.71 | 16.41 | 15.31 |
SSRSC | 51.34 | 80.08 | 95.98 | 77.24 | 20.83 | 68.61 | 62.85 | 22.29 | 20.59 |
GENSC | 72.48 | 88.90 | 98.97 | 79.09 | 26.17 | 84.54 | 83.24 | 30.54 | 34.25 |
表3 10种对比方法在9个数据集上的NMI ( %)
Tab. 3 NMI values of 10 comparison methods on 9 datasets
算法 | Lung | ORL | |||||||
---|---|---|---|---|---|---|---|---|---|
LRR | 51.57 | 86.33 | 98.26 | 77.39 | 20.83 | 61.82 | 72.13 | 22.93 | 26.30 |
SSC | 66.98 | 62.60 | 94.93 | 78.06 | 17.16 | 49.52 | 38.60 | 9.20 | 18.06 |
LSR | 64.42 | 79.67 | 96.60 | 76.69 | 20.83 | 78.32 | 73.30 | 10.05 | 14.79 |
SSCE | 67.65 | 80.08 | 95.62 | 76.29 | 20.83 | 80.07 | 74.15 | 22.29 | 13.41 |
EnSC | 64.72 | 85.28 | 93.38 | 78.31 | 20.83 | 68.03 | 78.91 | 22.29 | 25.79 |
ALSR | 49.29 | 79.64 | 95.26 | 78.86 | 20.83 | 56.36 | 70.09 | 19.71 | 26.41 |
l0-LRSSC | 55.94 | 82.67 | 92.53 | 92.49 | 20.83 | 74.99 | 71.01 | 22.29 | 34.12 |
LASC | 19.16 | 85.11 | 46.02 | 37.72 | 16.47 | 46.06 | 30.71 | 16.41 | 15.31 |
SSRSC | 51.34 | 80.08 | 95.98 | 77.24 | 20.83 | 68.61 | 62.85 | 22.29 | 20.59 |
GENSC | 72.48 | 88.90 | 98.97 | 79.09 | 26.17 | 84.54 | 83.24 | 30.54 | 34.25 |
算法 | Lung | ORL | |||||||
---|---|---|---|---|---|---|---|---|---|
LRR | 70.44 | 76.00 | 98.05 | 82.75 | 76.22 | 77.22 | 61.39 | 77.03 | 54.95 |
SSC | 92.11 | 56.50 | 91.66 | 78.12 | 73.85 | 67.32 | 38.78 | 67.67 | 53.15 |
LSR | 87.68 | 95.79 | 93.33 | 82.18 | 76.22 | 84.15 | 62.08 | 68.42 | 53.15 |
SSCE | 90.64 | 97.48 | 92.77 | 82.18 | 76.22 | 86.13 | 65.73 | 77.03 | 55.85 |
EnSC | 91.62 | 75.00 | 88.88 | 80.45 | 76.22 | 78.21 | 72.00 | 77.03 | 54.05 |
ALSR | 88.17 | 67.75 | 92.50 | 82.75 | 76.22 | 74.25 | 59.65 | 75.52 | 54.95 |
l0-LRSSC | 85.71 | 74.00 | 92.22 | 88.61 | 76.22 | 84.15 | 60.69 | 77.03 | 55.85 |
LASC | 73.39 | 69.58 | 37.22 | 38.50 | 52.12 | 60.39 | 26.95 | 52.41 | 53.15 |
SSRSC | 82.26 | 67.50 | 92.77 | 82.75 | 76.22 | 84.15 | 55.30 | 77.03 | 56.75 |
GENSC | 93.60 | 98.66 | 99.16 | 85.05 | 78.74 | 87.13 | 77.21 | 80.06 | 58.66 |
表4 10种对比方法在9个数据集上的Purity ( %)
Tab. 4 Purity values of 10 comparison methods on 9 datasets
算法 | Lung | ORL | |||||||
---|---|---|---|---|---|---|---|---|---|
LRR | 70.44 | 76.00 | 98.05 | 82.75 | 76.22 | 77.22 | 61.39 | 77.03 | 54.95 |
SSC | 92.11 | 56.50 | 91.66 | 78.12 | 73.85 | 67.32 | 38.78 | 67.67 | 53.15 |
LSR | 87.68 | 95.79 | 93.33 | 82.18 | 76.22 | 84.15 | 62.08 | 68.42 | 53.15 |
SSCE | 90.64 | 97.48 | 92.77 | 82.18 | 76.22 | 86.13 | 65.73 | 77.03 | 55.85 |
EnSC | 91.62 | 75.00 | 88.88 | 80.45 | 76.22 | 78.21 | 72.00 | 77.03 | 54.05 |
ALSR | 88.17 | 67.75 | 92.50 | 82.75 | 76.22 | 74.25 | 59.65 | 75.52 | 54.95 |
l0-LRSSC | 85.71 | 74.00 | 92.22 | 88.61 | 76.22 | 84.15 | 60.69 | 77.03 | 55.85 |
LASC | 73.39 | 69.58 | 37.22 | 38.50 | 52.12 | 60.39 | 26.95 | 52.41 | 53.15 |
SSRSC | 82.26 | 67.50 | 92.77 | 82.75 | 76.22 | 84.15 | 55.30 | 77.03 | 56.75 |
GENSC | 93.60 | 98.66 | 99.16 | 85.05 | 78.74 | 87.13 | 77.21 | 80.06 | 58.66 |
数据集 | 精确度 | NMI | ||||
---|---|---|---|---|---|---|
λ1≠0,λ2≠0 | λ3≠0 | λ4≠0 | λ1≠0,λ2≠0 | λ3≠0 | λ4≠0 | |
Lung | 89.16 | 87.19 | 84.72 | 71.28 | 67.94 | 59.85 |
ORL | 77.25 | 62.75 | 47.25 | 88.59 | 73.69 | 54.25 |
Zoo | 84.15 | 52.47 | 70.29 | 81.64 | 58.77 | 66.28 |
UMIST | 63.08 | 42.43 | 38.61 | 82.36 | 54.83 | 40.02 |
Carml | 80.45 | 67.81 | 71.84 | 78.44 | 71.28 | 70.26 |
Grimace | 98.05 | 79.72 | 84.72 | 98.26 | 87.14 | 59.85 |
表5 通过使用正则化项获得的聚类结果 ( %)
Tab. 5 Clustering results obtained by using regularizers
数据集 | 精确度 | NMI | ||||
---|---|---|---|---|---|---|
λ1≠0,λ2≠0 | λ3≠0 | λ4≠0 | λ1≠0,λ2≠0 | λ3≠0 | λ4≠0 | |
Lung | 89.16 | 87.19 | 84.72 | 71.28 | 67.94 | 59.85 |
ORL | 77.25 | 62.75 | 47.25 | 88.59 | 73.69 | 54.25 |
Zoo | 84.15 | 52.47 | 70.29 | 81.64 | 58.77 | 66.28 |
UMIST | 63.08 | 42.43 | 38.61 | 82.36 | 54.83 | 40.02 |
Carml | 80.45 | 67.81 | 71.84 | 78.44 | 71.28 | 70.26 |
Grimace | 98.05 | 79.72 | 84.72 | 98.26 | 87.14 | 59.85 |
1 | 张琦,郑伯川,张征,等. 基于随机分块的稀疏子空间聚类方法[J]. 计算机应用, 2022, 42(4): 1148-1154. |
ZHANG Q, ZHENG B C, ZHANG Z, et al. Sparse subspace clustering method based on random blocking[J]. Journal of Computer Applications, 2022, 42(4): 1148-1154. | |
2 | LIU G, LIN Z, YAN S, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184. |
3 | 任奇泽,贾洪杰,陈东宇. 融合局部结构学习的大规模子空间聚类算法[J]. 计算机应用, 2023, 43(12): 3747-3754. |
REN Q Z, JIA H J, CHEN D Y. Large-scale subspace clustering algorithm with local structure learning[J]. Journal of Computer Applications, 2023, 43(12): 3747-3754. | |
4 | ELHAMIFAR E, VIDAL R. Sparse subspace clustering: algorithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781. |
5 | BAI L, LIANG J Y. Sparse subspace clustering with entropy-norm[C]// Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 561-568. |
6 | BRBIĆ M, KOPRIVA I. l0-Motivated low-rank sparse subspace clustering[J]. IEEE Transactions on Cybernetics, 2020, 50(4): 1711-1725. |
7 | PANAGAKIS Y, KOTROPOULOS C. Elastic net subspace clustering applied to pop/rock music structure analysis[J]. Pattern Recognition Letters, 2014, 38: 46-53. |
8 | XU Y, CHEN S, LI J, et al. Linearity-aware subspace clustering[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 8770-8778. |
9 | DYER E L, STUDER C, BARANIUK R G. Subspace clustering with dense representations[C]// Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2013: 3258-3262. |
10 | 郑毅,马盈仓,杨小飞. 基于可靠邻居与精确簇数的稀疏子空间聚类[J]. 计算机应用研究, 2021, 38(1): 75-82. |
ZHENG Y, MA Y C, YANG X F. Sparse subspace clustering based on reliable neighbors and exact cluster number[J]. Application Research of Computers, 2021, 38(1): 75-82. | |
11 | LIU G, YAN S. Latent low-rank representation for subspace segmentation and feature extraction[C]// Proceedings of the 2011 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2011: 1615-1622. |
12 | VIDAL R, FAVARO P. Low Rank Subspace Clustering (LRSC)[J]. Pattern Recognition Letters, 2014, 43: 47-61. |
13 | WEN J, FANG X, XU Y, et al. Low-rank representation with adaptive graph regularization[J]. Neural Networks, 2018, 108: 83-96. |
14 | LI H, XU T, WU X J, et al. LRRNet: a novel representation learning guided fusion network for infrared and visible images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(9): 11040-11052. |
15 | XIAO S, LI W, XU D, et al. FaLRR: a fast low rank representation solver[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 4612-4620. |
16 | 刘明明,羊远灿,杨研博,等. 面向矩阵秩函数准确估计的自表示子空间聚类方法[J]. 计算机应用研究, 2024, 41(1): 72-75, 158. |
LIU M M, YANG Y C, YANG Y B, et al. Low rank subspace clustering algorithm based on accurate estimation for matrix rank function[J]. Application Research of Computers, 2024, 41(1): 72-75, 158. | |
17 | LU C Y, MIN H, ZHAO Z Q. Robust and efficient subspace segmentation via least squares regression[C]// Proceedings of the 2012 European Conference on Computer Vision, LNCS 7578. Berlin: Springer, 2012: 347-360. |
18 | WEI L, ZHANG F, CHEN Z, et al. Subspace clustering via adaptive least square regression with smooth affinities[J]. Knowledge-Based Systems, 2022, 239: No.107950. |
19 | ZHUANG L, GAO H, LIN Z, et al. Non-negative low rank and sparse graph for semi-supervised learning[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2328-2335. |
20 | XU J, YU M, SHAO L, et al. Scaled simplex representation for subspace clustering[J]. IEEE Transactions on Cybernetics, 2021, 51(3): 1493-1505. |
21 | KOU S, YIN X, WANG Y, et al. Structure-aware subspace clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(10): 10569-10582. |
22 | FENG J, LIN Z, XU H, et al. Robust subspace segmentation with block-diagonal prior[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 3818-3825. |
23 | NIE F, WANG X, JORDAN M I, et al. The constrained Laplacian rank algorithm for graph-based clustering[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 1969-1976. |
24 | ZOU H, HASTIE T. Regularization and variable selection via the elastic net[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2005, 67(2): 301-320. |
25 | VON LUXBURG U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4): 395-416. |
26 | NIE F, ZHU W, LI X. Unsupervised feature selection with structured graph optimization[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 1302-1308. |
27 | FAN K. On a theorem of Weyl concerning eigenvalues of linear transformations Ⅰ[J]. Proceedings of the National Academy of Sciences of the United States of America, 1949, 35(11): 652-655. |
28 | LIN Z, CHEN M, MA Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[EB/OL]. [2023-12-10].. |
29 | YOU C, LI C G, ROBINSON D P, et al. Oracle based active set algorithm for scalable elastic net subspace clustering[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 3928-3937. |
[1] | 朱俊屹, 常雷雷, 徐晓滨, 郝智勇, 于海跃, 姜江. 基于最小先验知识的自监督学习方法[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1035-1041. |
[2] | 洪梓榕, 包广清. 基于集成学习的雷达自动目标识别综述[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 371-382. |
[3] | 区卓越, 邓秀勤, 陈磊. 基于加权锚点的自适应多视图互补聚类算法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 115-126. |
[4] | 王清, 赵杰煜, 叶绪伦, 王弄潇. 统一框架的增强深度子空间聚类方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 1995-2003. |
[5] | 陈学斌, 任志强, 张宏扬. 联邦学习中的安全威胁与防御措施综述[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1663-1672. |
[6] | 姚梓豪, 栗远明, 马自强, 李扬, 魏良根. 基于机器学习的多目标缓存侧信道攻击检测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1862-1871. |
[7] | 佘维, 李阳, 钟李红, 孔德锋, 田钊. 基于改进实数编码遗传算法的神经网络超参数优化[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 671-676. |
[8] | 郑毅, 廖存燚, 张天倩, 王骥, 刘守印. 面向城区的基于图去噪的小区级RSRP估计方法[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 855-862. |
[9] | 张卓, 陈花竹. 基于一致性和多样性的多尺度自表示学习的深度子空间聚类[J]. 《计算机应用》唯一官方网站, 2024, 44(2): 353-359. |
[10] | 李博, 黄建强, 黄东强, 王晓英. 基于异构平台的稀疏矩阵向量乘自适应计算优化[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3867-3875. |
[11] | 陈学斌, 屈昌盛. 面向联邦学习的后门攻击与防御综述[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3459-3469. |
[12] | 孙仁科, 皇甫志宇, 陈虎, 李仲年, 许新征. 神经架构搜索综述[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 2983-2994. |
[13] | 柴汶泽, 范菁, 孙书魁, 梁一鸣, 刘竟锋. 深度度量学习综述[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 2995-3010. |
[14] | 尹春勇, 周永成. 双端聚类的自动调整聚类联邦学习[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3011-3020. |
[15] | 崔昊阳, 张晖, 周雷, 杨春明, 李波, 赵旭剑. 有序规范实数对多相似度K最近邻分类算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2673-2678. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||