《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (2): 371-382.DOI: 10.11772/j.issn.1001-9081.2024020179
收稿日期:
2024-02-26
修回日期:
2024-03-26
接受日期:
2024-04-03
发布日期:
2024-06-04
出版日期:
2025-02-10
通讯作者:
包广清
作者简介:
洪梓榕(1986—),男,四川遂宁人,博士研究生,主要研究方向:雷达HRRP目标识别、机器学习;
基金资助:
Zirong HONG1, Guangqing BAO2()
Received:
2024-02-26
Revised:
2024-03-26
Accepted:
2024-04-03
Online:
2024-06-04
Published:
2025-02-10
Contact:
Guangqing BAO
About author:
HONG Zirong, born in 1986, Ph. D. candidate. His research interests include radar HRRP target recognition, machine learning.
Supported by:
摘要:
雷达自动目标识别(RATR)在军事和民用领域中都有广泛的应用。由于集成学习通过集成已有的机器学习模型改善模型分类性能,具有较好的鲁棒性,因此被越来越多地应用于雷达目标检测与识别领域。系统梳理和提炼现有相关文献对集成学习在RATR中的研究进展。首先,介绍集成学习的概念、框架与发展历程,将集成学习与传统机器学习、深度学习方法对比,并总结集成学习理论和常见集成学习方法的优势、不足及研究的主要聚焦点;其次,简述RATR的概念;接着,重点阐述集成学习在不同雷达图像分类特征中的应用,详细讨论基于合成孔径雷达(SAR)和高分辨距离像(HRRP)的目标检测与识别方法,并总结这些方法的研究进展和应用成效;最后,讨论RATR以及集成学习所面临的挑战,并对集成学习在雷达目标识别领域的应用进行展望。
中图分类号:
洪梓榕, 包广清. 基于集成学习的雷达自动目标识别综述[J]. 计算机应用, 2025, 45(2): 371-382.
Zirong HONG, Guangqing BAO. Review of radar automatic target recognition based on ensemble learning[J]. Journal of Computer Applications, 2025, 45(2): 371-382.
分类器 | 分类器 | |
---|---|---|
表1 二分类任务分类器的预测结果
Tab. 1 Prediction results of binary classification task classifier
分类器 | 分类器 | |
---|---|---|
方法 | 核心思想 | 融合策略 | 优势 | 劣势 | 典型算法 |
---|---|---|---|---|---|
Bagging | bootstrap重采样 | 平均法/投票法 (线性组合) | 可以并行计算, 降低了模型之间的方差 | 大噪声数据集下容易过拟合, 多特征时权重可信度低 | 随机森林, 旋转森林 |
Boosting | 弱学习器迭代 | 平均法/投票法 (线性组合) | 简单的弱学习器作为基学习器,降低了模型拟合的偏差 | 不能并行计算, 数据不平衡导致训练精度差 | AdaBoost, XGBoost |
Stacking | 元学习器集成融合 | 学习法 (非线性组合) | 原理简单,灵活性高 | 选择合适的基学习器与元学习器依赖经验 |
表2 三种集成学习方法的对比总结
Tab. 2 Comparison and summary of three ensemble learning methods
方法 | 核心思想 | 融合策略 | 优势 | 劣势 | 典型算法 |
---|---|---|---|---|---|
Bagging | bootstrap重采样 | 平均法/投票法 (线性组合) | 可以并行计算, 降低了模型之间的方差 | 大噪声数据集下容易过拟合, 多特征时权重可信度低 | 随机森林, 旋转森林 |
Boosting | 弱学习器迭代 | 平均法/投票法 (线性组合) | 简单的弱学习器作为基学习器,降低了模型拟合的偏差 | 不能并行计算, 数据不平衡导致训练精度差 | AdaBoost, XGBoost |
Stacking | 元学习器集成融合 | 学习法 (非线性组合) | 原理简单,灵活性高 | 选择合适的基学习器与元学习器依赖经验 |
提升类型 | 核心思想 | 参考文献及其方法概要 |
---|---|---|
数据预处理与特征提取 | 多源数据融合 | 文献[ |
文献[ | ||
元特征分类 | 文献[ | |
文献[ | ||
最优平均度量 | 文献[ | |
特征提取 | 文献[ | |
文献[ | ||
文献[ | ||
文献[ | ||
分类器集成选择 | 静态选择集成 | 文献[ |
动态选择集成 | 文献[ | |
文献[ | ||
模型结构与算法设计 | 算法改进 | 文献[ |
文献[ | ||
文献[ | ||
多算法融合 | 文献[ | |
文献[ | ||
文献[ | ||
多核学习 | 文献[ | |
文献[ | ||
文献[ |
表3 集成学习在雷达自动目标识别领域的应用情况分析与总结
Tab. 3 Analysis and summary of applications of ensemble learning in field of radar automatic target recognition
提升类型 | 核心思想 | 参考文献及其方法概要 |
---|---|---|
数据预处理与特征提取 | 多源数据融合 | 文献[ |
文献[ | ||
元特征分类 | 文献[ | |
文献[ | ||
最优平均度量 | 文献[ | |
特征提取 | 文献[ | |
文献[ | ||
文献[ | ||
文献[ | ||
分类器集成选择 | 静态选择集成 | 文献[ |
动态选择集成 | 文献[ | |
文献[ | ||
模型结构与算法设计 | 算法改进 | 文献[ |
文献[ | ||
文献[ | ||
多算法融合 | 文献[ | |
文献[ | ||
文献[ | ||
多核学习 | 文献[ | |
文献[ | ||
文献[ |
1 | HANSEN L K, SALAMON P. Neural network ensembles[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001. |
2 | DASARATHY B V, SHEELA B V. A composite classifier system design: concepts and methodology[J]. Proceedings of the IEEE, 1979, 67(5): 708-713. |
3 | EFRON B. Bootstrap methods: another look at the jackknife[M]// KOTZ S, JOHNSON N L. Breakthroughs in statistics: methodology and distribution, SSS. New York: Springer, 1992: 569-593. |
4 | SCHAPIRE R E. The strength of weak learnability[J]. Machine Learning, 1990, 5(2): 197-227. |
5 | WOLPERT D H. Stacked generalization[J]. Neural Networks, 1992, 5(2): 241-259. |
6 | DIETTERICH T G. Ensemble methods in machine learning[C]// Proceedings of the 2020 International Workshop on Multiple Classifier Systems, LNCS 1857. Berlin: Springer, 2000: 1-15. |
7 | ZHOU Z H. Machine learning[M]. LIU S, translated. Singapore: Springer, 2021: 58-65. |
8 | ROKACH L. Ensemble-based classifiers[J]. Artificial Intelligence Review, 2010, 33(1/2): 1-39. |
9 | VALENTINI G, DIETTERICH T G. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods[J]. Journal of Machine Learning Research, 2004, 5: 725-775. |
10 | OPITZ D W, SHAVLIK J W. Generating accurate and diverse members of a neural-network ensemble[C]// Proceedings of the 8th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 1995: 535-541. |
11 | KUNCHEVA L I. Combining pattern classifiers: methods and algorithms[M]. 2nd ed. New York: John Wiley & Sons, Inc., 2014: 127-135. |
12 | ZHOU Z H. Ensemble methods: foundations and algorithms[M]. New York: Chapman and Hall/CRC, 2012: 129-136. |
13 | OZA N C, RUSSELL S J. Online bagging and boosting[C]// Proceedings of the 2001 International Workshop on Artificial Intelligence and Statistics. New York: JMLR.org, 2001: 229-236. |
14 | BASZCZYNSKI J, STEFANOWSKI J. Neighbourhood sampling in bagging for imbalanced data[J]. Neurocomputing, 2015, 150(Pt B): 529-542. |
15 | HO T K. The random subspace method for constructing decision forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(8): 832-844. |
16 | CIGNA F, BATESON L B, JORDAN C J, et al. Simulating SAR geometric distortions and predicting Persistent Scatterer densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: nationwide feasibility assessment to monitor the landmass of Great Britain with SAR imagery[J]. Remote Sensing of Environment, 2014, 152: 441-466. |
17 | YE Y, WU Q, HUANG J Z, et al. Stratified sampling for feature subspace selection in random forests for high dimensional data[J]. Pattern Recognition, 2013, 46(3): 769-787. |
18 | FREUND Y, SCHAPIRE R E. Experiments with a new boosting algorithm[C]// Proceedings of the 13th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc., 1996: 148-156. |
19 | FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232. |
20 | YE J, CHOW J H, CHEN J, et al. Stochastic gradient boosted distributed decision trees[C]// Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York: ACM, 2009: 2061-2064. |
21 | TAO R. Optimized housing price prediction based on XGBoost[J]. Journal of Sichuan University (Natural Science Edition), 2022, 59(3): 187-204. |
22 | TODOROVSKI L, DŽEROSKI S. Combining classifiers with meta decision trees[J]. Machine Learning, 2003, 50(3): 223-249. |
23 | 何丽,韩文秀. 用元决策树组合多个分类器的方法[J]. 计算机工程, 2005, 31(12): 18-19, 80. |
HE L, HAN W X. Method of combining multiple classifiers with meta decision trees[J]. Computer Engineering, 2005, 31(12): 18-19, 80. | |
24 | DŽEROSKI S, ŽENKO B. Is combining classifiers with stacking better than selecting the best one?[J]. Machine Learning, 2004, 54(3): 255-273. |
25 | SHUNMUGAPRIYA P, KANMANI S. Optimization of stacking ensemble configurations through artificial bee colony algorithm[J]. Swarm and Evolutionary Computation, 2013, 12: 24-32. |
26 | 徐丰,王海鹏,金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6(2): 136-148. |
XU F, WANG H P, JIN Y Q. Deep learning as applied in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6(2): 136-148. | |
27 | 邓洋洋. 高分辨率SAR图像目标检测与特征提取[D]. 成都:成都信息工程大学, 2018: 17-24. |
DENG Y Y. Target detection and feature extraction in high-resolution SAR images[D]. Chengdu: Chengdu University of Information Technology, 2018: 17-24. | |
28 | LEE J S, GRUNES M R, DE GRANDI G. Polarimetric SAR speckle filtering and its implication for classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2363-2373. |
29 | 刘宏伟,杜兰,袁莉,等. 雷达高分辨距离像目标识别研究进展[J]. 电子与信息学报, 2005, 27(8): 1328-1334. |
LIU H W, DU L, YUAN L, et al. Progress in radar automatic target recognition based on high range resolution profile[J]. Journal of Electronics and Information Technology, 2005, 27(8): 1328-1334. | |
30 | 杜兰. 雷达高分辨距离像目标识别方法研究[D]. 西安:西安电子科技大学, 2007: 9-14. |
DU L. Study radar HRRP target recognition[D]. Xi’an: Xidian University, 2007: 9-14. | |
31 | NOVAK L M, OWIRKA G J, BROWER W S, et al. The automatic target-recognition system in SAIP[J]. The Lincoln Laboratory Journal, 1997, 10(2): 187-202. |
32 | METH R, CHELLAPPA R. Feature matching and target recognition in synthetic aperture radar imagery[C]// Proceedings of the 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing . Piscataway: IEEE, 1999: 3333-3336. |
33 | 张红莉,李月琴,韩磊,等. 基于LGBM和深度神经网络的HRRP目标识别方法[J]. 探测与控制学报, 2022, 44(2): 97-103. |
ZHANG H L, LI Y Q, HAN L, et al. HRRP target recognition method based on LGBM and deep neural network[J]. Journal of Detection and Control, 2022, 44(2): 97-103. | |
34 | 杜兰,刘宏伟,保铮,等. 一种利用目标雷达高分辨距离像幅度起伏特性的特征提取新方法[J]. 电子学报, 2005, 33(3):411-415. |
DU L, LIU H W, BAO Z, et al. A new feature extraction method using the amplitude fluctuation property of target HRRPs for radar automatic target recognition[J]. Acta Electronica Sinica, 2005, 33(3):411-415. | |
35 | LIN Z, JI K, KANG M, et al. Deep convolutional highway unit network for SAR target classification with limited labeled training data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1091-1095. |
36 | JITHESH V, SAGAYARAJ M J, SRINIVASA K G. LSTM recurrent neural networks for high resolution range profile based radar target classification[C]// Proceedings of the 3rd International Conference on Computational Intelligence and Communication Technology. Piscataway: IEEE, 2017: 1-6. |
37 | YANG Y, JIANG J. Hybrid sampling-based clustering ensemble with global and local constitutions[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(5): 952-965. |
38 | XU L, LI J, BRENNING A. A comparative study of different classification techniques for marine oil spill identification using RADARSAT-1 imagery[J]. Remote Sensing of Environment, 2014, 141: 14-23. |
39 | LI H, MA J, GONG M, et al. Change detection in synthetic aperture radar images based on evolutionary multiobjective optimization with ensemble learning[J]. Memetic Computing, 2015, 7: 275-289. |
40 | 刘培, 王光彦, 邹友峰, 等. 遥感信息融合和分类器集成的地类高精度识别[J]. 遥感信息, 2016, 31(4): 116-121. |
LIU P, WANG G Y, ZOU Y F, et al. Information integration and classifier ensemble for land cover identification[J]. Remote Sensing Information, 2016, 31(4): 116-121. | |
41 | MERA D, FERNÁNDEZ-DELGADO M, COTOS J M, et al. Comparison of a massive and diverse collection of ensembles and other classifiers for oil spill detection in SAR satellite images[J]. Neural Computing and Applications, 2017, 28(S1): 1101-1117. |
42 | BARBAT M M, WESCHE C, WERHLI A V, et al. An adaptive machine learning approach to improve automatic iceberg detection from SAR images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 156: 247-259. |
43 | ADRIANO B, XIA J, BAIER G, et al. Multi-source data fusion based on ensemble learning for rapid building damage mapping during the 2018 Sulawesi earthquake and tsunami in Palu, Indonesia[J]. Remote Sensing, 2019, 11(7): No.886. |
44 | YANG X, DING J. A computational framework for iceberg and ship discrimination: case study on Kaggle competition[J]. IEEE Access, 2020, 8: 82320-82327. |
45 | 贾程澄,王军,邱峰. 多特征提取和多核SVM的舰船目标识别方法[J]. 电光与控制, 2021, 28(11): 106-111. |
JIA C C, WANG J, QIU F. A ship target recognition method based on multi-feature extraction and multi-kernel SVM[J]. Electronics Optics and Control, 2021, 28(11): 106-111. | |
46 | YAN Z, SONG X, YAG L, et al. Ship classification in synthetic aperture radar images based on multiple classifiers ensemble learning and automatic identification system data transfer learning[J]. Remote Sensing, 2022, 14(21): No.5288. |
47 | 袁乃全,熊丽军. 基于GEE与集成学习的土地覆盖信息提取方法[J]. 地理空间信息, 2023, 21(5): 76-79. |
YUAN N Q, XIONG L J. Land coverage information extraction method based on GEE and integrated learning[J]. Geospatial Information, 2023, 21(5): 76-79. | |
48 | ZHONG W, JING M, XU K, et al. Arctic sea ice lead detection from Chinese HY-2B radar altimeter data[J]. Remote Sensing, 2023, 15(2): No.516. |
49 | ZHAO Z, JIAO L, ZHAO J, et al. Discriminant deep belief network for high-resolution SAR image classification[J]. Pattern Recognition, 2017, 61: 686-701. |
50 | XUE R, BAI X, ZHOU F. Spatial-temporal ensemble convolution for sequence SAR target classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2): 1250-1262. |
51 | WEI P, HÄNSCH R. Random ferns for semantic segmentation of PolSAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: No.5218212. |
52 | CHEN S, LI X, CHI S, et al. Ship target discrimination in SAR images based on BOW model with multiple features and spatial pyramid matching[J]. IEEE Access, 2020, 8: 166071-166082. |
53 | WANG J, WANG Y, CHEN B, et al. LCS-EnsemNet: a semisupervised deep neural network for SAR image change detection with dual feature extraction and label-consistent self-ensemble[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 11903-11925. |
54 | JIA L, ZHANG T, FANG J, et al. Multiple kernel graph cut for SAR image change detection[J]. Remote Sensing, 2021, 13(4): No.725. |
55 | ZHANG W, DU L, LI L L, et al. Ensemble Bayesian max-margin one-class classifier for SAR target discrimination in complex scenes[J]. IET Conference Proceedings, 2020, 9: 1526-1530. |
56 | ZHENG H, HU Z, LIU J, et al. MetaBoost: a novel heterogeneous DCNNs ensemble network with two-stage filtration for SAR ship classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: No.4509005. |
57 | XUE Y, PEI J, HUANG Y, et al. Target recognition for SAR images based on heterogeneous CNN ensemble[C]// Proceedings of the 2018 IEEE Radar Conference. Piscataway: IEEE, 2018: 507-512. |
58 | ZHANG F, WANG Y, NI J, et al. SAR target small sample recognition based on CNN cascaded features and AdaBoost rotation forest[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6): 1008-1012. |
59 | GU Y, XU Y, LIU J. SAR ATR by decision fusion of multiple random convolution features[C]// Proceedings of the 22nd International Conference on Information Fusion. Piscataway: IEEE, 2019: 1-8. |
60 | SUN Y, WANG Y, HU L, et al. SAR target recognition using simulated data by an ensemble multi-scale deep domain adaptation recognition framework[C]// Proceedings of the 2021 CIE International Conference on Radar. Piscataway: IEEE, 2021: 1413-1417. |
61 | HUA W, ZHANG C, XIE W, et al. Polarimetric SAR image classification based on ensemble dual-branch CNN and superpixel algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 2759-2772. |
62 | XIE Z, WANG X, CHEN B. SAR ship recognition: dataset construction and long tail classification method[C]// Proceedings of the 3rd International Conference on Electronics, Communications and Information Technology. Piscataway: IEEE, 2022: 88-93. |
63 | 李汶虹,王建国. 结合Bi-2DPCA和PNN集成的SAR图像目标识别[J]. 中国电子科学研究院学报, 2014, 9(4): 401-407. |
LI W H, WANG J G. SAR images target recognition based on bilateral two-dimensional principal component analysis and probabilistic neural network ensemble[J]. Journal of China Academy of Electronics and Information Technology, 2014, 9(4): 401-407. | |
64 | PEI J, HUANG Y, SUN Z, et al. Multiview synthetic aperture radar automatic target recognition optimization: modeling and implementation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6425-6439. |
65 | ZHANG C, WANG Y, LIU H, et al. SAR target recognition using only simulated data for training by hierarchically combining CNN and image similarity[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: No.4503505. |
66 | WU C, WANG X, ZHENG C. Classifying HRRP by AdaBoostSVM[C]// Proceedings of the 9th International Conference on Signal Processing. Piscataway: IEEE, 2008: 1582-1585. |
67 | WANG S, LI J, WANG Y, et al. Radar HRRP target recognition based on gradient boosting decision tree[C]// Proceedings of the 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Piscataway: IEEE, 2016: 1013-1017. |
68 | 胡生亮,范学满,贺静波. 基于元学习的反舰导弹目标识别研究[J]. 海军工程大学学报, 2018, 30(1): 1-6. |
HU S L, FAN X M, HE J B. Target recognition of anti-ship missile based on meta-learning[J]. Journal of Naval University of Engineering, 2018, 30(1): 1-6. | |
69 | SAGAYARAJ M J, JITHESH V, ROSHANI D. Comparative study between deep learning techniques and random forest approach for HRRP based radar target classification[C]// Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems. Piscataway: IEEE, 2021: 385-388. |
70 | PARVATHA R S, RAMYA T, APARANJI G S, et al. Signature based radar target classification[C]// Proceedings of the 2021 International Conference on Recent Trends on Electronics, Information, Communication and Technology. Piscataway: IEEE, 2021: 873-879. |
71 | 雷蕾,王晓丹,邢雅琼,等. 结合SVM和DS证据理论的多极化HRRP分类研究[J]. 控制与决策, 2013, 28(6): 861-866. |
LEI L, WANG X D, XING Y Q, et al. Multi-polarized HRRP classification by SVM and DS evidence theory[J]. Control and Decision, 2013, 28(6): 861-866. | |
72 | 张玉玺,王晓丹,姚旭,等. 基于H/A/α分解的全极化HRRP目标识别方法[J]. 系统工程与电子技术, 2013, 35(12): 2501-2506. |
ZHANG Y X, WANG X D, YAO X, et al. Target recognition of fully polarimetric HRRP based on H/A/α decomposition[J]. Systems Engineering and Electronics, 2013, 35(12): 2501-2506. | |
73 | 范学满,胡生亮,贺静波. 基于集成间隔优化的对海雷达目标识别算法[J]. 华中科技大学学报(自然科学版), 2017, 45(12): 73-79. |
FAN X M, HU S L, HE J B. Target recognition method for maritime surveillance radars based on ensemble margin optimization[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(12): 73-79. | |
74 | FAN X, HU S, HE J. A dynamic selection ensemble method for target recognition based on clustering and randomized reference classifier[J]. International Journal of Machine Learning and Cybernetics, 2019, 10(3): 515-525. |
75 | GUO Y, XIAO H, FAN H, et al. Multiclass multiple kernel learning for HRRP-based radar target recognition[C]// Proceedings of the SPIE 10443, 2nd International Workshop on Pattern Recognition. Bellingham WA: SPIE, 2017: No.1044306. |
76 | WANG Y, CHEN W, SONG J, et al. Open set radar HRRP recognition based on random forest and extreme value theory[C]// Proceedings of the 2018 International Conference on Radar. Piscataway: IEEE, 2018: 1-4. |
77 | WANG Y, BI X, CHEN W, et al. Deep forest for radar HRRP recognition[J]. The Journal of Engineering, 2019, 2019(21): 8018-8021. |
78 | XIANG Q, WANG X, LAI J, et al. Snapshot ensemble one-dimensional convolutional neural networks for ballistic target recognition[C]// Proceedings of the 6th World Conference on Computing and Communication Technologies. Piscataway: IEEE, 2023: 187-193. |
[1] | 邓淼磊, 阚雨培, 孙川川, 徐海航, 樊少珺, 周鑫. 基于深度学习的网络入侵检测系统综述[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 453-466. |
[2] | 余松森, 林智凡, 薛国鹏, 徐建宇. 基于改进YOLOv8的轻量级大幅面瓷砖缺陷检测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 647-654. |
[3] | 丁丹妮, 彭博, 吴锡. 受腹侧通路启发的脂肪肝超声图像分类方法VPNet[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 662-669. |
[4] | 李严, 叶冠华, 李雅文, 梁美玉. 基于丰度协调技术的企业ESG指标预测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 670-676. |
[5] | 张众维, 王俊, 刘树东, 王志恒. 多尺度特征融合与加权框融合的遥感图像目标检测[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 633-639. |
[6] | 张天骐, 谭霜, 沈夕文, 唐娟. 融合注意力机制和多尺度特征的图像水印方法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 616-623. |
[7] | 郑宗生, 杜嘉, 成雨荷, 赵泽骋, 张月维, 王绪龙. 用于红外-可见光图像分类的跨模态双流交替交互网络[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 275-283. |
[8] | 徐欣然, 张绍兵, 成苗, 张洋, 曾尚. 基于多路层次化混合专家模型的轴承故障诊断方法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 59-68. |
[9] | 梁杰涛, 罗兵, 付兰慧, 常青玲, 李楠楠, 易宁波, 冯其, 何鑫, 邓辅秦. 基于坐标几何采样的点云配准方法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 214-222. |
[10] | 晏燕, 钱星颖, 闫鹏斌, 杨杰. 位置大数据的联邦学习统计预测与差分隐私保护方法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 127-135. |
[11] | 张思齐, 张金俊, 王天一, 秦小林. 基于信号时态逻辑的深度时序事件检测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 90-97. |
[12] | 李顺勇, 李师毅, 胥瑞, 赵兴旺. 基于自注意力融合的不完整多视图聚类算法[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2696-2703. |
[13] | 秦璟, 秦志光, 李发礼, 彭悦恒. 基于概率稀疏自注意力神经网络的重性抑郁疾患诊断[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2970-2974. |
[14] | 王熙源, 张战成, 徐少康, 张宝成, 罗晓清, 胡伏原. 面向手术导航3D/2D配准的无监督跨域迁移网络[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2911-2918. |
[15] | 黄云川, 江永全, 黄骏涛, 杨燕. 基于元图同构网络的分子毒性预测[J]. 《计算机应用》唯一官方网站, 2024, 44(9): 2964-2969. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||