| [1] |
杨姝慧.基于时空信息融合的深度强化学习机器人人群导航研究[D].济南:齐鲁工业大学,2024:2.
|
|
YANG S H. Research on robot crowd navigation with deep reinforcement learning based on spatio-temporal information fusion[D]. Jinan: Qilu University of Technology, 2024: 2.
|
| [2] |
何丽,张恒,袁亮,等.服务机器人社会意识导航方法综述[J]. 计算机工程与应用,2022,58(11):1-11.
|
|
HE L, ZHANG H, YUAN L, et al. Review of socially-aware navigation methods of service robots[J]. Computer Engineering and Applications, 2022, 58(11): 1-11.
|
| [3] |
GARRELL A, SANFELIU A. Cooperative social robots to accompany groups of people[J]. The International Journal of Robotics Research, 2012, 31(13): 1675-1701.
|
| [4] |
FERRER G, GARRELL A, SANFELIU A. Robot companion: a social-force based approach with human awareness-navigation in crowded environments[C]// Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2013: 1688-1694.
|
| [5] |
HELBING D, MOLNÁR P. Social force model for pedestrian dynamics[J]. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1995, 51(5): 4282-4286.
|
| [6] |
VAN DEN BERG J, GUY S J, LIN M, et al. Reciprocal n-body collision avoidance[C]// Robotics Research: The 14th International Symposium ISRR, STAR 70. Berlin: Springer, 2011: 3-19.
|
| [7] |
KRETZSCHMAR H, SPIES M, SPRUNK C, et al. Socially compliant mobile robot navigation via inverse reinforcement learning[J]. The International Journal of Robotics Research, 2016, 35(11): 1289-1307.
|
| [8] |
TRAUTMAN P, MA J, MURRAY R M, et al. Robot navigation in dense human crowds: the case for cooperation[C]// Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2013: 2153-2160.
|
| [9] |
TRAUTMAN P, KRAUSE A. Unfreezing the robot: navigation in dense, interacting crowds[C]// Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2010: 797-803.
|
| [10] |
王少桐,况立群,韩慧妍,等.基于优势后见经验回放的强化学习导航方法[J].计算机工程,2024,50(1):313-319.
|
|
WANG S T, KUANG L Q, HAN H Y, et al. Reinforcement learning navigation method based on advantage hindsight experience replay[J]. Computer Engineering, 2024, 50(1): 313-319.
|
| [11] |
李永迪,李彩虹,张耀玉,等.基于改进SAC算法的移动机器人路径规划[J].计算机应用,2023,43(2):654-660.
|
|
LI Y D, LI C H, ZHANG Y Y, et al. Mobile robot path planning based on improved SAC algorithm[J]. Journal of Computer Applications, 2023, 43(2): 654-660.
|
| [12] |
SHI H, SHI L, XU M, et al. End-to-end navigation strategy with deep reinforcement learning for mobile robots[J]. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2393-2402.
|
| [13] |
LONG P, FAN T, LIAO X, et al. Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning[C]// Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2018: 6252-6259.
|
| [14] |
XUE J, ZHANG S, LU Y, et al. Bidirectional obstacle avoidance enhancement‐deep deterministic policy gradient: a novel algorithm for mobile‐robot path planning in unknown dynamic environments[J]. Advanced Intelligent Systems, 2024, 6(4): No.2300444.
|
| [15] |
马天,席润韬,吕佳豪,等.基于深度强化学习的移动机器人三维路径规划方法[J].计算机应用,2024,44(7):2055-2064.
|
|
MA T, XI R T, LYU J H, et al. Mobile robot 3D space path planning method based on deep reinforcement learning[J]. Journal of Computer Applications, 2024, 44(7): 2055-2064.
|
| [16] |
LU Y, CHEN Y, ZHAO D, et al. MGRL: graph neural network based inference in a Markov network with reinforcement learning for visual navigation[J]. Neurocomputing, 2021, 421: 140-150.
|
| [17] |
李忠伟,刘伟鹏,罗偲.基于轨迹引导的移动机器人导航策略优化算法[J].计算机应用研究,2024,41(5):1456-1461.
|
|
LI Z W, LIU W P, LUO C. Autonomous navigation policy optimization algorithm for mobile robots based on trajectory guidance[J]. Application Research of Computers, 2024, 41(5): 1456-1461.
|
| [18] |
CHEN Y F, LIU M, EVERETT M, et al. Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning[C]// Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2017: 285-292.
|
| [19] |
CHEN Y F, EVERETT M, LIU M, et al. Socially aware motion planning with deep reinforcement learning[C]// Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2017: 1343-1350.
|
| [20] |
EVERETT M, CHEN Y F, HOW J P. Motion planning among dynamic, decision-making agents with deep reinforcement learning[C]// Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2018: 3052-3059.
|
| [21] |
LIU S, CHANG P, LIANG W, et al. Decentralized structural-RNN for robot crowd navigation with deep reinforcement learning[C]// Proceedings of the 2021 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2021: 3517-3524.
|
| [22] |
CHEN C, LIU Y, KREISS S, et al. Crowd-robot interaction: crowd-aware robot navigation with attention-based deep reinforcement learning[C]// Proceedings of the 2019 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2019: 6015-6022.
|
| [23] |
YANG Y, JIANG J, ZHANG J, et al. ST2: spatial-temporal state transformer for crowd-aware autonomous navigation[J]. IEEE Robotics and Automation Letters, 2023, 8(2): 912-919.
|
| [24] |
陈锶奇,耿婕,汪云飞,等.基于离线强化学习的研究综述[J].无线电通信技术,2024,50(5):831-842.
|
|
CHEN S Q, GENG J, WANG Y F, et al. Survey of research on offline reinforcement learning[J]. Radio Communication Technology, 2024, 50(5): 831-842.
|
| [25] |
FIGUEIREDO PRUDENCIO R, MAXIMO M R O A, COLOMBINI E L. A survey on offline reinforcement learning: taxonomy, review, and open problems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(8): 10237-10257.
|
| [26] |
FUJIMOTO S, MEGER D, PRECUP D. Off-policy deep reinforcement learning without exploration[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 2052-2062.
|
| [27] |
王洋,张震,王迪,等.基于可变保守程度离线强化学习的机器人运动控制方法[J/OL].控制工程 [2024-12-22]..
|
|
WANG Y, ZHANG Z, WANG D, et al. Robot motion control method based on offline reinforcement learning with variable conservatism[J/OL]. Control Engineering [2024-10-22]..
|
| [28] |
KOSTRIKOV I, NAIR A, LEVINE S. Offline reinforcement learning with implicit Q-learning[EB/OL]. [2024-03-19]..
|
| [29] |
SHAH D, BHORKAR A, LEEN H, et al. Offline reinforcement learning for visual navigation[C]// Proceedings of the 6th Conference on Robot Learning. New York: JMLR.org, 2023: 44-54.
|
| [30] |
NAIR A, GUPTA A, DALAL M, et al. AWAC: accelerating online reinforcement learning with offline datasets[EB/OL]. [2024-11-02]..
|
| [31] |
HAARNOJA T, ZHOU A, HARTIKAINEN K, et al. Soft actor-critic algorithms and applications[EB/OL]. [2024-09-03]..
|
| [32] |
FU J, KUMAR A, NACHUM O, et al. D4 RL: datasets for deep data-driven reinforcement learning[EB/OL].[2024-06-06]..
|