《计算机应用》唯一官方网站 ›› 2026, Vol. 46 ›› Issue (1): 188-197.DOI: 10.11772/j.issn.1001-9081.2025010068
收稿日期:2025-01-17
修回日期:2025-04-10
接受日期:2025-04-10
发布日期:2026-01-10
出版日期:2026-01-10
通讯作者:
潘大志
作者简介:冉敏(1998—),女(苗族),重庆人,硕士研究生,主要研究方向:智能计算、组合优化
基金资助:Received:2025-01-17
Revised:2025-04-10
Accepted:2025-04-10
Online:2026-01-10
Published:2026-01-10
Contact:
Dazhi PAN
About author:RAN Min, born in 1998, M. S. candidate. Her research interests include intelligent computing, combinatorial optimization.
Supported by:摘要:
针对多目标带时间窗的车辆路径问题(VRP),提出一种融合变异策略与邻接信息的差分进化算法(DE-MSAI)。首先,利用精英抽样策略设计4种变异操作,增加算法搜索的广度;其次,结合客户邻接信息矩阵引导个体进行邻域搜索,提升局部优化效率;最后,基于模拟退火准则以一定的概率接受劣解。在迭代过程中, 如果Pareto非支配解集连续未被改善的次数超过阈值,则启动精英碎片保护策略随机选择一个非支配解集中的解进行扰动,以维持种群的多样性。基于Solomon标准库中算例的仿真实验结果表明,所提算法相较于混合乌鸦算法(HCSA)的求解误差控制在0.07%以内;相较于基于聚类的混合大邻域搜索算法(K-means-ILNSA),所提算法在绝大多数算例中表现更优,路线偏差指标平均降低了4.51%,验证了算法的有效性。
中图分类号:
冉敏, 潘大志. 融合变异策略与邻接信息的差分进化算法[J]. 计算机应用, 2026, 46(1): 188-197.
Min RAN, Dazhi PAN. Differential evolution algorithm integrating mutation strategy and adjacency information[J]. Journal of Computer Applications, 2026, 46(1): 188-197.
| 符号 | 含义 |
|---|---|
| 客户与仓库的集合 | |
| 车辆的最大容量 | |
| 车辆集合 | |
| 客户i的需求量 | |
| 客户i与客户j之间的距离 | |
| 客户i接受货物的开始时间 | |
| 客户i接受货物的结束时间 | |
| 客户i卸载货物的服务时间 | |
| wi | 车辆在客户i的等待时间 |
| 车辆到达客户i的时间 | |
| 车辆从客户i到客户j的运输时间 | |
| 限制车辆最晚回到仓库的时间 | |
| 客户的总数目 |
表1 符号说明
Tab. 1 Symbol description
| 符号 | 含义 |
|---|---|
| 客户与仓库的集合 | |
| 车辆的最大容量 | |
| 车辆集合 | |
| 客户i的需求量 | |
| 客户i与客户j之间的距离 | |
| 客户i接受货物的开始时间 | |
| 客户i接受货物的结束时间 | |
| 客户i卸载货物的服务时间 | |
| wi | 车辆在客户i的等待时间 |
| 车辆到达客户i的时间 | |
| 车辆从客户i到客户j的运输时间 | |
| 限制车辆最晚回到仓库的时间 | |
| 客户的总数目 |
| 算例 | DE-MSAI | Vare1 | Vare2 | Vare3 | ||||
|---|---|---|---|---|---|---|---|---|
| f1 | f2 | Er1/% | Er2/% | Er1/% | Er2/% | Er1/% | Er2/% | |
| C101 | 828.94 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C102 | 828.94 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C201 | 591.56 | 0.00 | 2.04 | 0.00 | 0.00 | 0.00 | 6.32 | 0.00 |
| C202 | 591.56 | 0.00 | 5.27 | 0.00 | 6.57 | 100.00 | 10.84 | 100.00 |
| R101 | 1 643.16 | 683.20 | 0.58 | 1.04 | 1.47 | 1.44 | 5.31 | 2.36 |
| R103 | 1 213.80 | 494.30 | 1.50 | -15.01 | 3.37 | -11.86 | 7.60 | 2.23 |
| R104 | 987.13 | 263.70 | 0.83 | -45.37 | 3.34 | 12.10 | 6.48 | 20.98 |
| R202 | 1044.40 | 3 258.50 | 0.62 | 0.17 | 4.64 | -18.34 | 8.36 | -3.38 |
| R203 | 885.50 | 2 747.50 | 0.88 | -1.65 | 3.72 | -0.27 | 8.40 | 0.80 |
| R204 | 764.16 | 1 477.50 | 2.16 | -1.85 | 10.10 | -8.75 | 10.38 | -8.15 |
| RC101 | 1 643.80 | 191.50 | 0.47 | -2.24 | 3.45 | -1.06 | 6.69 | 11.63 |
| RC102 | 1 461.33 | 286.64 | 2.59 | -19.05 | 6.15 | -10.68 | 6.23 | -4.19 |
| RC104 | 1 144.85 | 81.76 | 0.10 | 0.00 | 1.68 | -47.21 | 19.27 | 31.48 |
| RC202 | 1 097.26 | 2 751.67 | 0.42 | -0.17 | 1.39 | 0.06 | 5.75 | -7.29 |
| RC203 | 935.12 | 1 959.11 | 0.64 | 1.51 | 4.44 | -2.83 | 5.85 | -1.14 |
| RC205 | 1 157.66 | 2 853.42 | 1.72 | 1.39 | 3.69 | -2.99 | 4.33 | 0.29 |
表2 DE-MSAI中3个算子的性能测试结果
Tab. 2 Performance test results of three operators in DE-MSAI
| 算例 | DE-MSAI | Vare1 | Vare2 | Vare3 | ||||
|---|---|---|---|---|---|---|---|---|
| f1 | f2 | Er1/% | Er2/% | Er1/% | Er2/% | Er1/% | Er2/% | |
| C101 | 828.94 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C102 | 828.94 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C201 | 591.56 | 0.00 | 2.04 | 0.00 | 0.00 | 0.00 | 6.32 | 0.00 |
| C202 | 591.56 | 0.00 | 5.27 | 0.00 | 6.57 | 100.00 | 10.84 | 100.00 |
| R101 | 1 643.16 | 683.20 | 0.58 | 1.04 | 1.47 | 1.44 | 5.31 | 2.36 |
| R103 | 1 213.80 | 494.30 | 1.50 | -15.01 | 3.37 | -11.86 | 7.60 | 2.23 |
| R104 | 987.13 | 263.70 | 0.83 | -45.37 | 3.34 | 12.10 | 6.48 | 20.98 |
| R202 | 1044.40 | 3 258.50 | 0.62 | 0.17 | 4.64 | -18.34 | 8.36 | -3.38 |
| R203 | 885.50 | 2 747.50 | 0.88 | -1.65 | 3.72 | -0.27 | 8.40 | 0.80 |
| R204 | 764.16 | 1 477.50 | 2.16 | -1.85 | 10.10 | -8.75 | 10.38 | -8.15 |
| RC101 | 1 643.80 | 191.50 | 0.47 | -2.24 | 3.45 | -1.06 | 6.69 | 11.63 |
| RC102 | 1 461.33 | 286.64 | 2.59 | -19.05 | 6.15 | -10.68 | 6.23 | -4.19 |
| RC104 | 1 144.85 | 81.76 | 0.10 | 0.00 | 1.68 | -47.21 | 19.27 | 31.48 |
| RC202 | 1 097.26 | 2 751.67 | 0.42 | -0.17 | 1.39 | 0.06 | 5.75 | -7.29 |
| RC203 | 935.12 | 1 959.11 | 0.64 | 1.51 | 4.44 | -2.83 | 5.85 | -1.14 |
| RC205 | 1 157.66 | 2 853.42 | 1.72 | 1.39 | 3.69 | -2.99 | 4.33 | 0.29 |
| 算例 | MOLNS[ | HGA[ | DE-MSAI | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| TD | NV | TD | NV | TD | NV | TM | DET1/% | DET2/% | DEC1/% | DEC2/% | |
| C101 | 828.94 | 10 | 828.94 | 10 | 828.94 | 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C102 | 828.94 | 10 | 828.94 | 10 | 828.94 | 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C103 | 828.94 | 10 | 830.77 | 10 | 828.94 | 10 | 0.00 | 0.00 | -0.22 | 0.00 | 0.00 |
| C104 | 828.94 | 10 | 864.22 | 10 | 828.94 | 10 | 0.00 | 0.00 | -4.26 | 0.00 | 0.00 |
| C105 | 828.94 | 10 | 828.94 | 10 | 828.94 | 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C106 | 828.94 | 10 | 828.94 | 10 | 828.94 | 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C107 | 828.94 | 10 | 828.94 | 10 | 828.94 | 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C108 | 828.94 | 10 | 854.31 | 10 | 828.94 | 10 | 0.00 | 0.00 | -3.06 | 0.00 | 0.00 |
| C109 | 828.94 | 10 | 854.78 | 10 | 828.94 | 10 | 0.00 | 0.00 | -3.12 | 0.00 | 0.00 |
| C201 | 591.56 | 3 | 591.56 | 3 | 591.56 | 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C202 | 591.56 | 3 | 591.56 | 3 | 591.56 | 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C203 | 591.56 | 3 | 591.17 | 3 | 591.56 | 3 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 |
| C204 | 590.60 | 3 | 594.51 | 3 | 591.56 | 3 | 0.00 | 0.16 | -0.50 | 0.00 | 0.00 |
| C205 | 588.88 | 3 | 588.88 | 3 | 588.88 | 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C206 | 588.49 | 3 | 588.49 | 3 | 588.49 | 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C207 | 588.29 | 3 | 588.29 | 3 | 593.81 | 3 | 0.00 | 0.93 | 0.93 | 0.00 | 0.00 |
| C208 | 588.32 | 3 | 588.32 | 3 | 588.32 | 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C平均 | 0.06 | -0.60 | 0.00 | 0.00 | |||||||
| R101 | 1 654.93 | 19 | 1 656.55 | 19 | 1643.16 | 19 | 683.20 | -0.72 | -0.81 | 0.00 | 0.00 |
| R102 | 1475.33 | 18 | 1 476.85 | 18 | 1 482.26 | 18 | 1 173.05 | 0.47 | 0.36 | 0.00 | 0.00 |
| R103 | 1 240.44 | 14 | 1 230.07 | 14 | 1213.62 | 14 | 494.13 | -2.21 | -1.36 | 0.00 | 0.00 |
| R104 | 1 010.72 | 10 | 1 010.55 | 10 | 987.13 | 11 | 263.70 | -2.39 | -2.37 | 9.09 | 9.09 |
| R105 | 1 389.85 | 15 | 1 395.68 | 15 | 1360.12 | 15 | 1 179.74 | -2.19 | -2.61 | 0.00 | 0.00 |
| R106 | 1 269.14 | 13 | 1 261.61 | 13 | 1249.75 | 13 | 174.92 | -1.55 | -0.95 | 0.00 | 0.00 |
| R107 | 1 102.72 | 11 | 1 103.77 | 11 | 1078.85 | 11 | 1 431.21 | -2.21 | -2.31 | 0.00 | 0.00 |
| R108 | 991.57 | 10 | 966.99 | 10 | 975.25 | 10 | 109.34 | -1.67 | 0.85 | 0.00 | 0.00 |
| R109 | 1 177.76 | 12 | 1 200.20 | 12 | 1 155.28 | 13 | 84.98 | -1.95 | -3.89 | 7.69 | 7.69 |
| R110 | 1 129.60 | 12 | 1 127.28 | 12 | 1098.50 | 12 | 118.64 | -2.83 | -2.62 | 0.00 | 0.00 |
| R111 | 1 108.70 | 12 | 1 096.38 | 12 | 1056.10 | 12 | 105.79 | -4.98 | -3.81 | 0.00 | 0.00 |
| R112 | 964.15 | 10 | 982.14 | 10 | 966.48 | 10 | 45.71 | 0.24 | -1.62 | 0.00 | 0.00 |
| R201 | 1 156.73 | 7 | 1 442.28 | 7 | 1 238.29 | 8 | 3 555.28 | 6.59 | -16.47 | 12.50 | 12.50 |
| R202 | 1 065.73 | 5 | 1 212.49 | 5 | 1044.40 | 5 | 3 258.50 | -2.04 | -16.09 | 0.00 | 0.00 |
| R203 | 901.72 | 5 | 1 197.67 | 5 | 885.50 | 5 | 2 747.50 | -1.83 | -35.25 | 0.00 | 0.00 |
| R204 | 750.23 | 4 | 854.31 | 4 | 764.16 | 4 | 1 477.50 | 1.82 | -11.80 | 0.00 | 0.00 |
| R205 | 964.23 | 5 | 1 337.65 | 5 | 956.60 | 5 | 1 257.20 | -0.80 | -39.83 | 0.00 | 0.00 |
| R206 | 907.35 | 5 | 1 114.76 | 5 | 884.59 | 5 | 1 736.42 | -2.57 | -26.02 | 0.00 | 0.00 |
| R207 | 851.89 | 3 | 1 055.71 | 3 | 807.56 | 3 | 1 093.62 | -5.49 | -30.73 | 0.00 | 0.00 |
| R208 | 731.84 | 3 | 860.53 | 3 | 736.36 | 3 | 823.89 | 0.61 | -16.86 | 0.00 | 0.00 |
| R平均 | -1.29 | -10.71 | 1.46 | 1.46 | |||||||
| RC101 | 1 662.56 | 15 | 1 656.59 | 15 | 1643.80 | 15 | 191.5 | -1.14 | -0.78 | 0.00 | 0.00 |
| RC102 | 1 486.35 | 14 | 1 532.25 | 14 | 1461.33 | 14 | 286.64 | -1.71 | -4.85 | 0.00 | 0.00 |
| RC103 | 1 291.95 | 12 | 1 344.03 | 12 | 1277.68 | 11 | 129.57 | -1.12 | -5.19 | -9.09 | -9.09 |
| RC104 | 1 162.53 | 10 | 1 184.90 | 11 | 1144.85 | 10 | 81.76 | -1.54 | -3.50 | 0.00 | -10.00 |
| RC105 | 1 604.53 | 16 | 1 662.01 | 14 | 1530.17 | 15 | 1 269.06 | -4.86 | -8.62 | -6.67 | 6.67 |
| RC106 | 1 400.09 | 13 | 1344.03 | 12 | 1 388.97 | 12 | 98.73 | -0.80 | 3.24 | -8.33 | 0.00 |
| RC107 | 1 259.55 | 12 | 1 263.07 | 12 | 1243.06 | 12 | 94.53 | -1.33 | -1.61 | 0.00 | 0.00 |
| RC108 | 1 205.13 | 11 | 1 144.94 | 11 | 1139.97 | 11 | 89.82 | -5.72 | -0.44 | 0.00 | 0.00 |
| RC201 | 1 281.81 | 8 | 1 442.28 | 4 | 1 326.48 | 8 | 3 232.53 | 3.37 | -8.73 | 0.00 | 50.00 |
| RC202 | 1 104.94 | 8 | 1 212.49 | 4 | 1 097.26 | 8 | 2 751.67 | -0.70 | -10.50 | 0.00 | 50.00 |
| RC203 | 938.04 | 5 | 1 197.67 | 3 | 935.12 | 5 | 1 959.11 | -0.31 | -28.08 | 0.00 | 40.00 |
| RC204 | 805.46 | 3 | 854.31 | 10 | 790.37 | 3 | 820.70 | -1.91 | -8.09 | 0.00 | -233.33 |
| RC205 | 1 162.43 | 7 | 1 337.65 | 4 | 1 157.66 | 7 | 2 853.42 | -0.41 | -15.55 | 0.00 | 42.86 |
| RC206 | 1 097.07 | 5 | 1 114.76 | 4 | 1 059.54 | 7 | 1 737.64 | -3.54 | -5.21 | 28.57 | 42.86 |
| RC207 | 970.78 | 5 | 1 055.71 | 4 | 970.82 | 6 | 1 636.75 | 0.00 | -8.74 | 16.67 | 33.33 |
| RC208 | 810.99 | 4 | 860.53 | 3 | 782.93 | 4 | 288.82 | -3.58 | -9.91 | 0.00 | 25.00 |
| RC平均 | -1.58 | -7.29 | 1.32 | 2.39 | |||||||
表3 Solomon算例测试结果
Tab. 3 Test results of Solomon instances
| 算例 | MOLNS[ | HGA[ | DE-MSAI | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| TD | NV | TD | NV | TD | NV | TM | DET1/% | DET2/% | DEC1/% | DEC2/% | |
| C101 | 828.94 | 10 | 828.94 | 10 | 828.94 | 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C102 | 828.94 | 10 | 828.94 | 10 | 828.94 | 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C103 | 828.94 | 10 | 830.77 | 10 | 828.94 | 10 | 0.00 | 0.00 | -0.22 | 0.00 | 0.00 |
| C104 | 828.94 | 10 | 864.22 | 10 | 828.94 | 10 | 0.00 | 0.00 | -4.26 | 0.00 | 0.00 |
| C105 | 828.94 | 10 | 828.94 | 10 | 828.94 | 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C106 | 828.94 | 10 | 828.94 | 10 | 828.94 | 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C107 | 828.94 | 10 | 828.94 | 10 | 828.94 | 10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C108 | 828.94 | 10 | 854.31 | 10 | 828.94 | 10 | 0.00 | 0.00 | -3.06 | 0.00 | 0.00 |
| C109 | 828.94 | 10 | 854.78 | 10 | 828.94 | 10 | 0.00 | 0.00 | -3.12 | 0.00 | 0.00 |
| C201 | 591.56 | 3 | 591.56 | 3 | 591.56 | 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C202 | 591.56 | 3 | 591.56 | 3 | 591.56 | 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C203 | 591.56 | 3 | 591.17 | 3 | 591.56 | 3 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 |
| C204 | 590.60 | 3 | 594.51 | 3 | 591.56 | 3 | 0.00 | 0.16 | -0.50 | 0.00 | 0.00 |
| C205 | 588.88 | 3 | 588.88 | 3 | 588.88 | 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C206 | 588.49 | 3 | 588.49 | 3 | 588.49 | 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C207 | 588.29 | 3 | 588.29 | 3 | 593.81 | 3 | 0.00 | 0.93 | 0.93 | 0.00 | 0.00 |
| C208 | 588.32 | 3 | 588.32 | 3 | 588.32 | 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| C平均 | 0.06 | -0.60 | 0.00 | 0.00 | |||||||
| R101 | 1 654.93 | 19 | 1 656.55 | 19 | 1643.16 | 19 | 683.20 | -0.72 | -0.81 | 0.00 | 0.00 |
| R102 | 1475.33 | 18 | 1 476.85 | 18 | 1 482.26 | 18 | 1 173.05 | 0.47 | 0.36 | 0.00 | 0.00 |
| R103 | 1 240.44 | 14 | 1 230.07 | 14 | 1213.62 | 14 | 494.13 | -2.21 | -1.36 | 0.00 | 0.00 |
| R104 | 1 010.72 | 10 | 1 010.55 | 10 | 987.13 | 11 | 263.70 | -2.39 | -2.37 | 9.09 | 9.09 |
| R105 | 1 389.85 | 15 | 1 395.68 | 15 | 1360.12 | 15 | 1 179.74 | -2.19 | -2.61 | 0.00 | 0.00 |
| R106 | 1 269.14 | 13 | 1 261.61 | 13 | 1249.75 | 13 | 174.92 | -1.55 | -0.95 | 0.00 | 0.00 |
| R107 | 1 102.72 | 11 | 1 103.77 | 11 | 1078.85 | 11 | 1 431.21 | -2.21 | -2.31 | 0.00 | 0.00 |
| R108 | 991.57 | 10 | 966.99 | 10 | 975.25 | 10 | 109.34 | -1.67 | 0.85 | 0.00 | 0.00 |
| R109 | 1 177.76 | 12 | 1 200.20 | 12 | 1 155.28 | 13 | 84.98 | -1.95 | -3.89 | 7.69 | 7.69 |
| R110 | 1 129.60 | 12 | 1 127.28 | 12 | 1098.50 | 12 | 118.64 | -2.83 | -2.62 | 0.00 | 0.00 |
| R111 | 1 108.70 | 12 | 1 096.38 | 12 | 1056.10 | 12 | 105.79 | -4.98 | -3.81 | 0.00 | 0.00 |
| R112 | 964.15 | 10 | 982.14 | 10 | 966.48 | 10 | 45.71 | 0.24 | -1.62 | 0.00 | 0.00 |
| R201 | 1 156.73 | 7 | 1 442.28 | 7 | 1 238.29 | 8 | 3 555.28 | 6.59 | -16.47 | 12.50 | 12.50 |
| R202 | 1 065.73 | 5 | 1 212.49 | 5 | 1044.40 | 5 | 3 258.50 | -2.04 | -16.09 | 0.00 | 0.00 |
| R203 | 901.72 | 5 | 1 197.67 | 5 | 885.50 | 5 | 2 747.50 | -1.83 | -35.25 | 0.00 | 0.00 |
| R204 | 750.23 | 4 | 854.31 | 4 | 764.16 | 4 | 1 477.50 | 1.82 | -11.80 | 0.00 | 0.00 |
| R205 | 964.23 | 5 | 1 337.65 | 5 | 956.60 | 5 | 1 257.20 | -0.80 | -39.83 | 0.00 | 0.00 |
| R206 | 907.35 | 5 | 1 114.76 | 5 | 884.59 | 5 | 1 736.42 | -2.57 | -26.02 | 0.00 | 0.00 |
| R207 | 851.89 | 3 | 1 055.71 | 3 | 807.56 | 3 | 1 093.62 | -5.49 | -30.73 | 0.00 | 0.00 |
| R208 | 731.84 | 3 | 860.53 | 3 | 736.36 | 3 | 823.89 | 0.61 | -16.86 | 0.00 | 0.00 |
| R平均 | -1.29 | -10.71 | 1.46 | 1.46 | |||||||
| RC101 | 1 662.56 | 15 | 1 656.59 | 15 | 1643.80 | 15 | 191.5 | -1.14 | -0.78 | 0.00 | 0.00 |
| RC102 | 1 486.35 | 14 | 1 532.25 | 14 | 1461.33 | 14 | 286.64 | -1.71 | -4.85 | 0.00 | 0.00 |
| RC103 | 1 291.95 | 12 | 1 344.03 | 12 | 1277.68 | 11 | 129.57 | -1.12 | -5.19 | -9.09 | -9.09 |
| RC104 | 1 162.53 | 10 | 1 184.90 | 11 | 1144.85 | 10 | 81.76 | -1.54 | -3.50 | 0.00 | -10.00 |
| RC105 | 1 604.53 | 16 | 1 662.01 | 14 | 1530.17 | 15 | 1 269.06 | -4.86 | -8.62 | -6.67 | 6.67 |
| RC106 | 1 400.09 | 13 | 1344.03 | 12 | 1 388.97 | 12 | 98.73 | -0.80 | 3.24 | -8.33 | 0.00 |
| RC107 | 1 259.55 | 12 | 1 263.07 | 12 | 1243.06 | 12 | 94.53 | -1.33 | -1.61 | 0.00 | 0.00 |
| RC108 | 1 205.13 | 11 | 1 144.94 | 11 | 1139.97 | 11 | 89.82 | -5.72 | -0.44 | 0.00 | 0.00 |
| RC201 | 1 281.81 | 8 | 1 442.28 | 4 | 1 326.48 | 8 | 3 232.53 | 3.37 | -8.73 | 0.00 | 50.00 |
| RC202 | 1 104.94 | 8 | 1 212.49 | 4 | 1 097.26 | 8 | 2 751.67 | -0.70 | -10.50 | 0.00 | 50.00 |
| RC203 | 938.04 | 5 | 1 197.67 | 3 | 935.12 | 5 | 1 959.11 | -0.31 | -28.08 | 0.00 | 40.00 |
| RC204 | 805.46 | 3 | 854.31 | 10 | 790.37 | 3 | 820.70 | -1.91 | -8.09 | 0.00 | -233.33 |
| RC205 | 1 162.43 | 7 | 1 337.65 | 4 | 1 157.66 | 7 | 2 853.42 | -0.41 | -15.55 | 0.00 | 42.86 |
| RC206 | 1 097.07 | 5 | 1 114.76 | 4 | 1 059.54 | 7 | 1 737.64 | -3.54 | -5.21 | 28.57 | 42.86 |
| RC207 | 970.78 | 5 | 1 055.71 | 4 | 970.82 | 6 | 1 636.75 | 0.00 | -8.74 | 16.67 | 33.33 |
| RC208 | 810.99 | 4 | 860.53 | 3 | 782.93 | 4 | 288.82 | -3.58 | -9.91 | 0.00 | 25.00 |
| RC平均 | -1.58 | -7.29 | 1.32 | 2.39 | |||||||
| 算例 | NV | TD | 路线偏差/% | |||
|---|---|---|---|---|---|---|
| DE-MSAI | HCSA[ | K-means-ILNSA[ | 相较于HCSA路线偏差1 | 相较于K-means-ILNSA路线偏差2 | ||
| 平均 | 0.07 | -4.51 | ||||
| C101 | 10 | 828.94 | 828.94 | 828.94 | 0.00 | 0.00 |
| C102 | 10 | 828.94 | 828.94 | 828.94 | 0.00 | 0.00 |
| C103 | 10 | 828.94 | 828.94 | 828.94 | 0.00 | 0.00 |
| C104 | 10 | 828.94 | 828.39 | 828.94 | 0.07 | 0.00 |
| C105 | 10 | 828.94 | 828.94 | 828.94 | 0.00 | 0.00 |
| C106 | 10 | 828.94 | 828.94 | 828.94 | 0.00 | 0.00 |
| C107 | 10 | 828.94 | 828.94 | 828.94 | 0.00 | 0.00 |
| C108 | 10 | 828.94 | 828.94 | 828.94 | 0.00 | 0.00 |
| C109 | 10 | 828.94 | 828.94 | 828.94 | 0.00 | 0.00 |
| C201 | 3 | 591.56 | 591.56 | 626.81 | 0.00 | -5.96 |
| C202 | 3 | 591.56 | 591.56 | 678.53 | 0.00 | -14.70 |
| C203 | 3 | 591.56 | 591.17 | 705.29 | 0.07 | -19.23 |
| C204 | 3 | 591.56 | 590.60 | 650.57 | 0.16 | -9.98 |
| C205 | 3 | 588.88 | 588.88 | 629.94 | 0.00 | -6.97 |
| C206 | 3 | 588.49 | 588.49 | 620.67 | 0.00 | -5.47 |
| C207 | 3 | 593.81 | 588.32 | 647.19 | 0.92 | -8.99 |
| C208 | 3 | 588.32 | 588.49 | 620.27 | -0.03 | -5.43 |
表4 C1、C2算例路线成本求解结果的对比分析
Tab. 4 Comparative analysis of route cost solution results for C1 and C2 instances
| 算例 | NV | TD | 路线偏差/% | |||
|---|---|---|---|---|---|---|
| DE-MSAI | HCSA[ | K-means-ILNSA[ | 相较于HCSA路线偏差1 | 相较于K-means-ILNSA路线偏差2 | ||
| 平均 | 0.07 | -4.51 | ||||
| C101 | 10 | 828.94 | 828.94 | 828.94 | 0.00 | 0.00 |
| C102 | 10 | 828.94 | 828.94 | 828.94 | 0.00 | 0.00 |
| C103 | 10 | 828.94 | 828.94 | 828.94 | 0.00 | 0.00 |
| C104 | 10 | 828.94 | 828.39 | 828.94 | 0.07 | 0.00 |
| C105 | 10 | 828.94 | 828.94 | 828.94 | 0.00 | 0.00 |
| C106 | 10 | 828.94 | 828.94 | 828.94 | 0.00 | 0.00 |
| C107 | 10 | 828.94 | 828.94 | 828.94 | 0.00 | 0.00 |
| C108 | 10 | 828.94 | 828.94 | 828.94 | 0.00 | 0.00 |
| C109 | 10 | 828.94 | 828.94 | 828.94 | 0.00 | 0.00 |
| C201 | 3 | 591.56 | 591.56 | 626.81 | 0.00 | -5.96 |
| C202 | 3 | 591.56 | 591.56 | 678.53 | 0.00 | -14.70 |
| C203 | 3 | 591.56 | 591.17 | 705.29 | 0.07 | -19.23 |
| C204 | 3 | 591.56 | 590.60 | 650.57 | 0.16 | -9.98 |
| C205 | 3 | 588.88 | 588.88 | 629.94 | 0.00 | -6.97 |
| C206 | 3 | 588.49 | 588.49 | 620.67 | 0.00 | -5.47 |
| C207 | 3 | 593.81 | 588.32 | 647.19 | 0.92 | -8.99 |
| C208 | 3 | 588.32 | 588.49 | 620.27 | -0.03 | -5.43 |
| [1] | TASAN A S, GEN M. A genetic algorithm based approach to vehicle routing problem with simultaneous pick-up and deliveries [J]. Computers and Industrial Engineering, 2012, 62(3): 755-761. |
| [2] | DANTZIG G B, RAMSER J H. The truck dispatching problem [J]. Management Science, 1959, 6(1): 80-91. |
| [3] | 张建同,丁烨.变邻域模拟退火算法求解速度时变的VRPTW问题[J].运筹与管理, 2019, 28(11): 77-84. |
| ZHANG J T, DING Y. Simulated annealing with variable neighborhood for time-dependent vehicle routing problem with time window [J]. Operations Research and Management Science, 2019, 28(11): 77-84. | |
| [4] | HO S C, HAUGLAND D. A tabu search heuristic for the vehicle routing problem with time windows and split deliveries [J]. Computers and Operations Research, 2004, 31(12): 1947-1964. |
| [5] | 韩亚娟,彭运芳,魏航,等.超启发式遗传算法求解带软时间窗的车辆路径问题[J].计算机集成制造系统, 2019, 25(10): 2571-2579. |
| HAN Y J, PENG Y F, WEI H, et al. Hyper-heuristic genetic algorithm for vehicle routing problem with soft time windows [J]. Computer Integrated Manufacturing Systems, 2019, 25(10): 2571-2579. | |
| [6] | 周蓉,沈维蕾,刘明周,等.带时间窗装卸一体化车辆路径问题的混合离散粒子群优化算法[J].中国机械工程, 2016, 27(4): 494-502. |
| ZHOU R, SHEN W L, LIU M Z, et al. A hybrid discrete particle swarm optimization algorithm for vehicle routing problem with time windows and simultaneous pickup and delivery [J]. China Mechanical Engineering, 2016, 27(4): 494-502. | |
| [7] | 何小锋,马良.带时间窗车辆路径问题的量子蚁群算法[J].系统工程理论与实践, 2013, 33(5): 1255-1261. |
| HE X F, MA L. Quantum-inspired ant colony algorithm for vehicle routing problem with time windows [J]. Systems Engineering — Theory and Practice, 2013, 33(5): 1255-1261. | |
| [8] | PECIN D, CONTARDO C, DESAULNIERS G, et al. New enhancements for the exact solution of the vehicle routing problem with time windows [J]. INFORMS Journal on Computing, 2017, 29(3): 489-502. |
| [9] | 王德东,陈术山,郑丕谔.不确定车辆数的有时间窗车辆选径问题的混合算法[J].计算机应用, 2006, 26(2): 482-484. |
| WANG D D, CHEN S S, ZHENG P E. Hybrid algorithm for variable fleet vehicle routing problem with time window [J]. Journal of Computer Applications, 2006, 26(2): 482-484. | |
| [10] | TICHA H BEN, ABSI N, FEILLET D, et al. Multigraph modeling and adaptive large neighborhood search for the vehicle routing problem with time windows [J]. Computers and Operations Research, 2019, 104: 113-126. |
| [11] | 李焱,潘大志,郑思情.多车场带时间窗车辆路径问题的改良自适应大邻域搜索算法[J].计算机应用, 2024, 44(6): 1897-1904. |
| LI Y, PAN D Z, ZHENG S Q. Improved adaptive large neighborhood search algorithm for multi-depot vehicle routing problem with time windows [J]. Journal of Computer Applications, 2024, 44(6): 1897-1904. | |
| [12] | YUE B, YANG J, MA J X, et al. An improved sequential insertion algorithm and tabu search to vehicle routing problem with time windows [J]. RAIRO: Operations Research, 2024, 58(2): 1979-1999. |
| [13] | 骆维,陈仕军,吴华伟.具有时间窗约束松弛的混合蚁群算法求解VRPTW [J].计算机系统应用, 2025, 34(2): 281-291. |
| LUO W, CHEN S J, WU H W. Hybrid ant colony optimization with time window constraint relaxation for solving VRPTW [J]. Computer Systems and Applications, 2025, 34(2): 281-291. | |
| [14] | TAN K C, CHEW Y H, LEE L H. A hybrid multi-objective evolutionary algorithm for solving vehicle routing problem with time windows [J]. Computational Optimization and Applications, 2006, 34(1): 115-151. |
| [15] | GHOSEIRI K, GHANNADPOUR S F. Multi-objective vehicle routing problem with time windows using goal programming and genetic algorithm [J]. Applied Soft Computing, 2010, 10(4): 1096- 1107. |
| [16] | DUAN J, HE Z, YEN G G. Robust multi-objective optimization for vehicle routing problem with time windows [J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8300-8314. |
| [17] | 陈凯,龚毅光.混合多目标灰狼算法求解多目标VRPTW问题[J].计算机工程与应用, 2024, 60(11): 309-318. |
| CHEN K, GONG Y G. Hybrid multiple-objective grey wolf algorithm solving multi-objective vehicle routing problem with time windows [J]. Computer Engineering and Applications, 2024, 60(11): 309-318. | |
| [18] | CAI Y, LI Z, CHEN M, et al. Solving multiobjective vehicle routing problems with time windows: a decomposition- based multiform optimization approach [J]. Tsinghua Science and Technology, 2024, 29(2): 305-324. |
| [19] | 林剑,叶璟轩,刘雯雯,等.求解带容量约束车辆路径问题的多模态差分进化算法[J].计算机应用, 2023, 43(7): 2248-2254. |
| LIN J, YE J X, LIU W W, et al. Multimodal differential evolution algorithm for solving capacitated vehicle routing problem [J]. Journal of Computer Applications, 2023, 43(7): 2248-2254. | |
| [20] | 陈莹,黄佩萱,陈锦萍,等.基于分层学习和差分进化的混合PSO算法求解车辆路径问题[J].计算机科学, 2022, 49(11A): No.210800271. |
| CHEN Y, HUANG P X, CHEN J P, et al. Hybrid particle swarm optimization algorithm based on hierarchical learning and different evolution for solving capacitated vehicle routing problem [J]. Computer Science, 2022, 49(11A): No.210800271. | |
| [21] | 宋晓宇,朱加园,孙焕良.一种求解带时间窗车辆路径问题的混合差分进化算法[J].计算机科学, 2014, 41(12): 220-225. |
| SONG X Y, ZHU J Y, SUN H L. Hybrid differential evolution algorithm for vehicle routing problem with time windows [J]. Computer Science, 2014, 41(12): 220-225. | |
| [22] | ZHANG W, YANG D, ZHANG G, et al. Hybrid multiobjective evolutionary algorithm with fast sampling strategy-based global search and route sequence difference based local search for VRPTW [J]. Expert Systems with Applications, 2020, 145: No.113151. |
| [23] | WU Q C, XIA X W, SONG H G, et al. A neighborhood comprehensive learning particle swarm optimization for the vehicle routing problem with time windows [J]. Swarm and Evolutionary Computation, 2024, 84: No.101425. |
| [24] | HAO J, LU M X, TIAN Y, et al. An evolutionary algorithm for solving capacitated vehicle routing problems by using local information [J]. Applied Soft Computing, 2022, 117: No.108431. |
| [25] | ALTABEEB A M, MOHSEN A M, GHALLAB A. An improved hybrid firefly algorithm for capacitated vehicle routing problem [J]. Applied Soft Computing Journal, 2019, 84: No.105728. |
| [26] | SOLOMON M M. Algorithms for the vehicle routing and scheduling problems with time window constraints [J]. Operations Research, 1987, 35(2): 254-265. |
| [27] | KONSTANTAKOPOULOS G D, GAYIALIS S P, KECHAGIAS E P, et al. A multiobjective large neighborhood search metaheuristic for the vehicle routing problem with time windows [J]. Algorithms, 2020, 13(10): 243-260. |
| [28] | AYESHA M, BERK A, KHAWER N. Logistics optimization using Hybrid Genetic Algorithm (HGA): a solution to the Vehicle Routing Problem with Time Windows (VRPTW) [J]. ISSS Journal of Micro and Smart Systems, 2024, 12: 36974-36989. |
| [29] | 马振鹏,焦晗暘,张哲,等.面向城市物流配送的车辆路径优化算法研究[J/OL].系统仿真学报, 1-10[2025-03-10]. . |
| MA Z P, JIAO H Y, ZHANG Z, et al. Research on vehicle routing optimization algorithm for urban logistics distribution [J/OL]. Journal of System Simulation, 1-10[2025-03-10]. . | |
| [30] | 闫龙,石小娟,唐源.混合乌鸦算法求解带软时间窗的车辆路径问题[J].计算机工程与设计, 2023, 44(12): 3656-3661. |
| YAN L, SHI X J, TANG Y. Hybrid crow search algorithm for vehicle routing problem with soft time windows [J]. Computer Engineering and Design, 2023, 44(12): 3656-3661. |
| [1] | 袁志超, 杨磊, 田井林, 魏晓威, 李康顺. 面向复杂约束多目标优化问题的双种群双阶段进化算法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2656-2665. |
| [2] | 刘哲旭, 张澳冰, 樊智勇. 飞机狭小空间虚拟维修姿态分层求解方法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2694-2703. |
| [3] | 谭瑛, 任新宇, 孙超利, 王思思. 两阶段填充采样的半监督昂贵多目标优化算法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1605-1612. |
| [4] | 陈晓娟, 张薇. 基于强化学习的无人机乡村末端配送任务分配[J]. 《计算机应用》唯一官方网站, 2025, 45(12): 4055-4063. |
| [5] | 张焱鹏, 赵于前, 张帆, 丘腾海, 桂瑰, 余伶俐. 基于改进MAML与GVAE的容量约束车辆路径问题求解方法[J]. 《计算机应用》唯一官方网站, 2025, 45(11): 3642-3648. |
| [6] | 李焱, 潘大志, 郑思情. 多车场带时间窗车辆路径问题的改良自适应大邻域搜索算法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1897-1904. |
| [7] | 姜涛, 梁振宇, 程然, 金耀初. GPU加速的演化算法求解多目标流水车间调度问题[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1364-1371. |
| [8] | 刘晓芳, 张军. 概率驱动的动态多目标多智能体协同调度进化优化[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1372-1377. |
| [9] | 高麟, 周宇, 邝得互. 进化双层自适应局部特征选择[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1408-1414. |
| [10] | 魏凤凤, 陈伟能. 分布式数据驱动的多约束进化优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1393-1400. |
| [11] | 田野, 陈津津, 张兴义. 面向约束多目标优化的进化计算与梯度下降联合优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1386-1392. |
| [12] | 赵楷文, 王鹏, 童向荣. 基于双阶段搜索的约束进化多任务优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1415-1422. |
| [13] | 李建强, 何舟. 面向多行程取送货车辆路径问题的混合NSGA-Ⅱ[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1187-1194. |
| [14] | 黄亚伟, 钱雪忠, 宋威. 基于双档案种群大小自适应方法的改进差分进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(12): 3844-3853. |
| [15] | 马勇健, 史旭华, 王佩瑶. 基于两阶段搜索与动态资源分配的约束多目标进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 269-277. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
