[1] ZHOU Z, ZHANG M. Multi-instance multi-label learning with application to scene classification[C]// Proceedings of the 2006 Conference Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2007: 1609-1616. [2] ZHOU Z, ZHANG M, HUANG S, et al. Multi-instance multi-label learning[J]. Artificial Intelligence, 2012, 176(1): 2291-2320. [3] HOMAN P, RALPH M A L, ROGERS T T. Semantic diversity: a measure of semantic ambiguity based on variability in the contextual usage of words[J]. Behavior Research Methods, 2013, 45(3):718-730. [4] ZHANG M, ZHOU Z. Multi-label learning by instance differentiation[C]// Proceedings of the 22nd Conference on Articial Intelligence. Menlo Park: AAAI Press, 2007: 669-674. [5] ZHANG D, HE J, LAWRENCE R. MI2LS: multi-instance learning from multiple information sources[C]// Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2013: 149-157. [6] ZHANG M, ZHOU Z. M3MIML: a maximum margin method for multi-instance multi-label learning[C]// Proceedings of the 8th IEEE International Conference on Data Mining. Piscataway: IEEE, 2008: 688-697. [7] TSOUMAKAS G, ZHANG M, ZHOU Z. Introduction to the special issue on learning from multi-label data[J]. Machine Learning, 2012, 88(1/2): 1-4. [8] XU X, FRANK E. Logistic regression and boosting for labeled bags of instances[C]// Proceedings of the 8th Pacific-Asia Conference Advances in Knowledge Discovery and Data Mining. Berlin: Springer, 2011: 272-281. [9] GALAR M, FERNANDEZ A, BARRENECHEA E. A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2012, 42(4): 463-484. [10] HUANG C, YIN J, HOU F. A text similarity measurement combining word semantic information with TF-IDF method[J]. Chinese Journal of Computers, 2011, 34(5): 856-864.(黄承慧,印鉴,侯昉.一种结合词项语义信息和TF-IDF方法的文本相似度量方法[J].计算机学报, 2011, 34(5): 856-864.) [11] QU X, CHEN Y, QIAO S, et al. Predicting the subcellular localization of proteins with multiple sites based on multiple features fusion[C]// Proceedings of the 10th International Conference Intelligent Computing in Bioinformatics. Berlin: Springer, 2014: 456-465. [12] YERPUDE A, DUBEY S. Colour image segmentation using K-medoids clustering [J]. International Journal of Computer Technology and Applications, 2012, 3(1): 152-154. [13] BENBOUZID D, BUSA-FEKETE R, CASAGRANDE N, et al. MultiBoost: a multi-purpose boosting package [J]. The Journal of Machine Learning Research, 2012, 13(1): 549-553. |