[1] WANG L, ABDEL-ATY M. Predicting crashes on expressway ramps with real-time traffic and weather data[C]//TRB 2015:Proceedings of the Transportation Research Board 94th Annual Meeting. Washington, DC:Transportation Research Board Business Office, 2015:32-38. [2] WANG L, ABDEL-ATY M. Real-time crash prediction for expressway weaving segments[J]. Transportation Research Part C, 2015, 61:1-10. [3] YU R, ABDEL-ATY M. Utilizing support vector machine in real-time crash risk evaluation[J]. Accident Analysis and Prevention, 2013, 51:252-259. [4] HOSSAIN M, MUROMACHI Y. A Bayesian network based framework for real-time crash prediction on the basic freeway segments of urban expressways[J]. Accident Analysis and Prevention, 2012, 45(1):373-381. [5] XU C, LIU P, WANG W, et al. Evaluation of the impacts of traffic states on crash risks on freeways[J]. Accident Analysis and Prevention, 2012, 47:162-171. [6] XU C, ANDREW P T, WANG W, et al. Predicting crash likelihood and severity on freeways with real-time loop detector data[J]. Accident Analysis and Prevention, 2013, 57:30-39. [7] 林震,杨浩.基于车速的交通事故贝叶斯预测[J].中国安全科学学报,2003,13(2):34-36.(LIN Z, YANG H. Bayesian prediction of traffic accident based on vehicle speed[J]. China Safety Science Journal, 2003, 13(2):34-36.) [8] 秦小虎,刘利,张颖.一种基于贝叶斯网络模型的交通事故预测方法[J].计算机仿真,2005,22(11):230-232.(QIN X H, LIU L, ZHANG Y. A traffic accident prediction method based on Bayesian network model[J]. Computer Simulation, 2005, 22(11):230-232.) [9] LV Y S, TANG S M. Real-time highway traffic accident prediction based on the k-nearest neighbor method[C]//ICMTMA 2009:Proceedings of the 2009 International Conference on Measuring Technology and Mechatronics Automation. Piscataway, NJ:IEEE, 2009:547-550. [10] LV Y S, TANG S M. Real-time highway accident prediction based on support vector machines[C]//CCDC'09:Proceedings of the21st Annual International Conference on2009 Chinese Control and Decision Conference. Piscataway, NJ:IEEE, 2009:4403-4407. [11] 贺邓超,张宏军,郝文宁.基于Parzen窗条件互信息计算的特征选择方法[J].计算机应用研究,2015,32(5):1387-1390.(HE D C, ZHANG H J, HAO W N. Feature selection based on conditional mutual information computation with Parzen window[J]. Application Research of Computers, 2015, 32(5):1387-1390.) [12] 张宏稷,杨健,李延.基于条件熵和Parzen窗的极化SAR舰船检测[J].清华大学学报(自然科学版),2012,52(12):1693-1697.(ZHANG H J, YANG J, LI Y. Ship detection in polarimetric SAR images based on the conditional entropy and Parzen windows[J]. Journal of Tsinghua University (Science and Technology), 2012, 52(12):1693-1697.) [13] 张学工.模式识别[M].3版.北京:清华大学出版社,2010:146-150.(ZHANG X G. Pattern Recognition[M]. 3rd ed. Beijing:Tsinghua University Press, 2010:146-150.) [14] 曹莹,苗启广,刘家辰.AdaBoost算法研究进展与展望[J].自动化学报,2013,39(6):745-758.(CAO Y, MIAO Q G, LIU J C. Advance and prospects of AdaBoost algorithm[J]. Acta Automatica Sinica, 2013, 39(6):745-758.) [15] 贾润莹,李静,王刚.基于AdaBoost和遗传算法的硬盘故障预测模型优化及选择[J].计算机研究与发展,2014,51(增刊):148-154.(JIA R Y, LI J, WANG G. Optimization and choice of hard drive failure prediction models based on AdaBoost and genetic algorithm[J]. Journal of Computer Research and Development, 2014, 51(Suppl.):148-154.) |