[1] ZHANG L P, ZHANG H Y, SHEN H F, et al. A super-resolution reconstruction algorithm for surveillance images[J]. Signal Processing, 2010,90(3):848-859. [2] LI F, JIA X P, DONALD F, et al. Super resolution for remote sensing images based on a universal hidden Markov tree model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3):1270-1278. [3] YUAN Q Q, ZHANG L P, SHEN H F. Regional spatially adaptive total variation super-resolution with spatial information filtering and clustering[J]. IEEE Transactions on Image Processing, 2013,22(6):2327-2342. [4] LI X, ORCHARD M T. New edge-directed interpolation[J]. IEEE Transactions on Image Processing, 2001, 10(10):1521-1527. [5] GUO K, YANG X, ZHA H, et al. Multiscale semilocal interpolation with antialiasing[J]. IEEE Transactions on Image Processing, 2012,21(2):615-625. [6] 杨学峰, 王高, 程耀瑜. 基于径向基函数的多帧图像超分辨重建算法[J]. 计算机应用, 2014,34(1):142-144.(YANG X F, WANG G, CHENG Y Y. Multi-frame image super-resolution reconstruction algorithm with radial basis function neural network[J]. Journal of Computer Applications, 2014, 34(1):142-144.) [7] 袁其平, 林海杰, 陈志宏,等. 用支持向量回归法实现单帧图像超分辨率重建[J]. 光学精密工程, 2016, 24(9):2302-2309. (YUAN Q P, LIN H J, CHEN Z H, et al. Single image super-resolution reconstruction using support vector regression[J]. Optics and Precision Engineering, 2016, 24(9):2302-2309.) [8] CHAO D, CHEN C L, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307. [9] SUN Y C, GU G H, SUI X B, et al. Single image super-resolution using compressive sensing with a redundant dictionary[J]. IEEE Photonics Journal,2015, 7(2):6900411. [10] YANG S Y, SUN F H, WANG M, et al. Novel super resolution restoration of remote sensing images based on compressive sensing and example patches-aided dictionary learning[C]//Proceedings of the 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping. Piscataway, NJ:IEEE,2011:1-6. [11] 陈伟业, 孙权森. 结合压缩感知与非局部信息的图像超分辨率重建[J]. 计算机应用, 2016, 36(9):2570-2575. (CHEN W Y, SUN Q S. Image super-resolution reconstruction combined with compressed sensing and nonlocal information[J]. Journal of Computer Applications, 2016, 36(9):2570-2575.) [12] NAVEEN K, PRADEEP N, RAHUL G, et al. Understanding compressive sensing and sparse representation-based super-resolution[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2012, 22(5):778-789. [13] PAN Z X, YU J, HUANG H J, et al. Super-resolution based on compressive sensing and structural self-similarity for remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9):4864-4876. [14] YEGANLI F, NAZZAL M, UNAL M, et al. Image super-resolution via sparse representation over multiple learned dictionaries based on edge sharpness[J]. Signal, Image and Video Processing, 2015, 10(3):535-542. [15] WU W, YANG X M, LIU K, et al. A new framework for remote sensing image super-resolution:sparse representation-based method by processing dictionaries with multi-type features[J]. Journal of Systems Architecture, 2016, 64:63-75. [16] SURYANARAYANA G, DHULI R. Image resolution enhancement using wavelet domain transformation and sparse signal representation[C]//Proceedings of the 2nd International Conference on Intelligent Computing, Communication & Convergence. Amsterdam:Elsevier, 2016:311-316. [17] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. [18] HOLGER R, KARIN S, PIERRE V. Compressed sensing and redundant dictionaries[J]. IEEE Transactions on Information Theory, 2008, 54(5):2210-2219. [19] EMMANUEL J, MICHAEL B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2):21-30. [20] MICHAL A, MICHAEL E, ALFRED B. K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Process, 2006, 54(11):4311-4322. [21] YANG J Y, PENG Y G, XU W L, et al. Ways to sparse representation: an overview[J]. Science in China Series F: Information Sciences,2009, 52(4):695-703. [22] PATI Y C, REZAIFAR R, KRISHNAPRAS P S. Orthogonal matching pursuit:recursive function approximation with applications to wavelet decomposition[C]// Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers. Piscataway, NJ: IEEE,1993:40-44. This work is supported by the National Defense Key Laboratory Fund Program of China (9140C120402120C1208).YANG Xuefeng, born in 1976, Ph. D., lecturer. His research interests include image restoration and super-resolution reconstruction, pattern recognition, computer vision.CHENG Yaoyu, born in 1966, Ph. D., professor. His research interests include information acquisition and processing, image processing, measurement and control system. WANG Gao, born in 1973, Ph. D., professor. His research interests include optoelectronic information processing. |