[1] SCHAPIRE R E. The strength of weak learnability[J]. Machine Learning, 1990, 5(2):197-227. [2] FREUND Y, SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[C]//Proceedings of the Second European Conference on Computational Learning Theory, LNCS 904. Berlin:Springer, 1995:23-37. [3] FREUND Y, SCHAPIRE R E. Experiments with a new boosting algorithm[C]//Proceedings of the Thirteenth International Conference on Machine Learning. San Francisco, CA:Morgan Kaufmann, 1996:148-156. [4] SCHAPIRE R E, SINGER Y. Improved boosting algorithms using confidence-rated predictions[J].Machine Learning, 1999, 37(3):297-336. [5] ZHU J, ZOU H, ROSSET S, et al. Multi-class AdaBoost[J]. Statistics and Its Interface, 2009, 2(3):349-360. [6] 胡金海,骆广琦,李应红,等.一种基于指数损失函数的多类分类AdaBoost算法及其应用[J].航空学报,2008,29(4):811-816.(HU J H, LUO G Q, LI Y H, et al. An AdaBoost algorithm for multi-class classification based on exponential loss function and its application[J]. Acta Aeronautica Et Astronautica Sinica, 2008, 29(4):811-816.) [7] 杨新武,马壮,袁顺.基于弱分类器调整的多分类AdaBoost算法[J].电子与信息学报,2016,38(2):373-380.(YANG X W, MA Z, YUAN S. Multi-class AdaBoost algorithm based on the adjusted weak classifier[J]. Journal of Electronics and Information Technology, 2016, 38(2):373-380.) [8] 孙士明,潘青,纪友芳.多阈值划分的连续AdaBoost人脸检测[J].计算机应用,2009,29(8):2098-2100.(SUN S M, PAN Q, JI Y F. Real AdaBoost face detection method based on multi-threshold[J]. Journal of Computer Applications, 2009, 29(8):2098-2100.) [9] 阮锦新,尹俊勋.基于人脸特征和AdaBoost算法的多姿态人脸检测[J].计算机应用,2010,30(4):967-970.(RUAN J X, YIN J X. Multi-pose face detection based on facial features and AdaBoost algorithm[J]. Journal of Computer Applications, 2010, 30(4):967-970.) [10] 王燕,公维军.双阈值级联分类器的加速人脸检测算法[J].计算机应用,2011,31(7):1821-1824.(WANG Y, GONG W J. Accelerated algorithm of face detection based on dual-threshold cascade classifiers[J]. Journal of Computer Applications, 2011, 31(7):1821-1824.) [11] NEGRI P, GOUSSIES N, LOTITO P. Detecting pedestrians on a movement feature space[J]. Pattern Recognition, 2014, 47(1):56-71. [12] 董超,周刚,刘玉娇,等.基于改进的AdaBoost算法在网络入侵检测中的应用[J].四川大学学报(自然科学版),2015,52(6):1225-1229.(DONG C, ZHOU G, LIU Y J, et al. The detection of network intrusion based on improved AdaBoost algorithm[J]. Journal of Sichuan University (Natural Science Edition), 2015, 52(6):1225-1229.) [13] 张彦峰,何佩琨.一种改进的AdaBoost算法——M-Asy AdaBoost[J]. 北京理工大学学报,2011,31(1):64-68.(ZHANG Y F, HE P K. A revised AdaBoost algorithm-M-Asy AdaBoost[J]. Transactions of Beijing Institute of Technology, 2011, 31(1):64-68.) [14] KO A H R, SABOURIN R, JR A S B. From dynamic classifier selection to dynamic ensemble selection[J]. Pattern Recognition, 2008, 41(5):1718-1731. |