1 KAPPE, SCHüTZF. Overview of tandem Mass Spectrometry (MS/MS) database search algorithms [J]. Current Protocols in Protein Science, 200749(1): 25.2.1-25.2.19. 2 ENG J K, JAHANT A, HOOPMANNM R. Comet: an open-source MS/MS sequence database search tool [J]. Proteomics, 2013, 13(1): 22-24. 3 ENG J K, HOOPMANNM R, JAHANT A, et al. A deeper look into Comet - implementation and features [J]. Journal of The American Society for Mass Spectrometry, 2015, 26(11): 1865-1874. 4 KIMS, PEVZNERP A. MS-GF+ makes progress towards a universal database search tool for proteomics [J]. Nature Communications, 2014, 5: Article No.5277. 5 PERKINSD N, PAPPIND J C, CREASYD M, et al. Probability-based protein identification by searching sequence databases using mass spectrometry data [J]. Electrophoresis, 1999, 20(18): 3551-3567. 6 COX J, MANNM. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification [J]. Nature Biotechnology, 2008, 26(12): 1367-72. 7 BAIW, BILMESJ, NOBLEW S. Bipartite matching generalizations for peptide identification in tandem mass spectrometry [C]// Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. New York: ACM, 2016: 327-336. 8 BAIW, BILMESJ, NOBLEW S. Submodular generalized matching for peptide identification in tandem mass spectrometry [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16(4): 1168-1181. 9 BEPLERT, BERGERB. Learning protein sequence embeddings using information from structure [EB/OL]. [2019-03-22]. https://arxiv.org/pdf/1902.08661.pdf. 10 WANGS, PENGJ, MAJ, et al. Protein secondary structure prediction using deep convolutional neural fields [J]. Scientific Reports, 2016, 6: Article No.18962. 11 ZHOUX, ZENGW, CHIH, et al. pDeep: predicting MS/MS spectra of peptides with deep learning [J]. Analytical Chemistry, 2017, 89(23): 12690-12697. 12 HEK, ZHANGX, RENS, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:770-778. 13 SHENGW, SUM S, LIZ, et al. Accurate de novo prediction of protein contact map by ultra-deep learning model [J]. PLoS Computational Biology, 2017, 13(1): Article No.e1005324. 14 WANGS, LIZ, YUY, et al. Folding membrane proteins by deep transfer learning [J]. Cell Systems, 2017, 5(3): 202-211. 15 BAHDANAUD, CHO K, BENGIOY. Neural machine translation by jointly learning to align and translate [EB/OL]. [2019-03-22]. https://arxiv.org/pdf/1409.0473.pdf. 16 VASWANIA, SHAZEERN, PARMARN, et al. Attention is all you need [EB/OL]. [2019-03-22]. https://arxiv.org/pdf/1706.03762.pdf. 17 WILHELMM, SCHLEGLJ, HAHNEH, et al. Mass-spectrometry-based draft of the human proteome [J]. Nature, 2014, 509(7502): 582-587. 18 GESSULATS, SCHMIDTT, ZOLGD P, et al. Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning [J]. Nat Methods, 2019, 16(6): 509-518. 19 MIKOLOVT, CHENK, CORRADOG, et al. Efficient estimation of word representations in vector space [EB/OL]. [2019-03-22].https://arxiv.org/pdf/1301.3781.pdf. 20 MIKOLOVT, SUTSKEVERI, CHENK, et al. Distributed representations of words and phrases and their compositionality [C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2013:3111-3119. |