[1] YEH C-C M, ZHU Y, ULANOVA L, et al. Matrix Profile I:all pairs similarity joins for time series:a unifying view that includes motifs, discords and shapelets[C]//Proceedings of the 2016 IEEE 16th International Conference on Data Mining. Piscataway, NJ:IEEE, 2016:1317-1322. [2] 周博,严洪森.基于小波和多维泰勒网动力学模型的金融时间序列预测[J].系统工程理论与实践,2013,33(10):2654-2662. (ZHOU B, YAN H S. Financial time series forecasting based on wavelet and multi-dimensional Taylor network dynamics model[J]. Systems Engineering- Theory and Practice, 2013, 33(10):2654-2662.) [3] AILLIOT P, BESSAC J, MONBET V, et al. Non-homogeneous hidden Markov-switching models for wind time series[J]. Journal of Statistical Planning and Inference, 2015, 160:75-88. [4] 张淑清,师荣艳,李盼,等.基于混沌关联积分的暂态电能质量扰动分类[J].仪器仪表学报,2015,36(1):160-166. (ZHANG S C, SHI R Y, LI P, et al. Transient power quality disturbance classification based on chaos-correlation-integral[J]. Chinese Journal of Scientific Instrument, 2015, 36(1):160-166.) [5] ARES J, LARA J A, LIZCANO D, et al. A soft computing framework for classifying time series based on fuzzy sets of events[J]. Information Sciences, 2016, 330:125-144. [6] PADMAVATHI S, RAMANUJAM E. Naive bayes classifier for ECG abnormalities using multivariate maximal time series motif[J]. Procedia Computer Science, 2015, 47:222-228. [7] GE X, SMYTH P. Deformable Markov model templates for time-series pattern matching[C]//Proceedings of the 20006th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2000:81-90. [8] KALPAKIS K, GADA D, PUTTAGUNTA V. Distance measures for effective clustering of ARIMA time-series[C]//Proceedings of the 2001 IEEE International Conference on Data Mining. Washington, DC:IEEE Computer Society, 2001:273-280. [9] KEOGH E, CHAKRABARTI K, PAZZANI M, et al. Dimensionality reduction for fast similarity search in large time series databases[J]. Knowledge & Information Systems, 2001, 3(3):263-286. [10] CHAKRABARTI K, KEOGH E, MEHROTRA S, et al. Locally adaptive dimensionality reduction for indexing large time series databases[J]. ACM Transactions on Database Systems, 2002, 27(2):188-228. [11] LIN J, KEOGH E, LONARDI S, et al. Finding motifs in time series[C]//Proceedings of the 2nd Workshop on Temporal Data Mining. New York:ACM, 2002:53-68. [12] 马百鸣.基于DTW度量的时间序列主旨模式提取[D].大连:大连理工大学,2011:1-3. (MA B M. Motif extraction algorithm of time series based on DTW[D]. Dalian:Dalian University of Technology, 2011:1-3.) [13] PATEL P, KEOGH E, LIN J, et al. Mining motifs in massive time series databases[C]//Proceedings of the 2002 IEEE International Conference on Data Mining. Washington, DC:IEEE Computer Society, 2002:370-377. [14] LIN J, LI Y. Finding approximate frequent patterns in streaming medical data[C]//Proceedings of the 2010 IEEE 23rd International Symposium on Computer-Based Medical Systems (CBMS). Washington, DC:IEEE Computer Society, 2010:13-18. [15] MURAKAMI K, DOKI S, OKUMA S, et al. A study of extraction method of motion patterns observed frequently from time-series posture data[C]//Proceeding of the 2005 IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ:IEEE, 2005:3610-3615. [16] FU T-C, CHUNG F-L, LUK R, et al. Preventing meaningless stock time series pattern discovery by changing perceptually important point detection[C]//Proceedings of the 2005 Second International Conference on Fuzzy Systems and Knowledge Discovery, LNCS 3613. Berlin:Springer, 2005:1171-1174. [17] EAMONN KEOGH J L. Clustering of time series subsequences is meaningless:implications for past and future research[J]. Knowledge & Information Systems, 2003, 8(2):154-177. [18] CHIU B, KEOGH E, et al. Probabilistic discovery of time series motifs[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2003:493-498. [19] MINNEN D, ISBELL C, ESSA I, et al. Detecting subdimensional motifs:an efficient algorithm for generalized multivariate pattern discovery[C]//Proceedings of the 2007 Seventh IEEE International Conference on Data Mining. Washington, DC:IEEE Computer Society, 2007:601-606 [20] LIN Y, MCCOOL M D, GHORBANI A A. Time series motif discovery and anomaly detection based on subseries join[J]. IAENG International Journal of Computer Science, 2010, 37(3):259-271. [21] SILVA D F, YEH C-C M, ENRIQUE G, et al. SiMPle:assessing music similarity using subsequences joins[C]//Proceedings of the 17th International Society for Music Information Retrieval Conference, New York:ISMIR, 2016:23-29. [22] GRABOCKA J, SCHILLING N, SCHMIDTTHIEME L. Latent time-series motifs[J]. ACM Transactions on Knowledge Discovery from Data, 2016, 11(1):1-20. [23] YANKOV D, KEOGH E, MEDINA J, et al. Detecting timeseries motifs under uniform scaling[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2007:844-853. [24] LI Y, LIN J. Approximate variable-length time series motif discovery using grammar inference[C]//Proceedings of the 10th International Workshop on Multimedia Data Mining. New York:ACM, 2010:Article No. 10. [25] LI Y, LIN J, OATES T. Visualizing variable-length time series motifs[C]//Proceedings of the 12th SIAM International Conference on Data Mining. Philadelphia, PA:Society for Industrial and Applied Mathematics (SIAM), 2012:895-906. [26] DUY T C, ANH D T. A fast method for motif discovery in large time series database under dynamic time warping[C]//Proceeding of the Sixth International Conference on Knowledge and Systems Engineering, AISC 326. Cham:Springer, 2015:155-167. [27] MUEEN A, ZHU Y, YEH M, et al. The fastest similarity search algorithm for time series subsequences under euclidean distance[EB/OL]. (2015-08-01)[2017-11-01]. http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html. [28] MUEEN A, NATH S, LIU J. Fast approximate correlation for massive time-series data[C]//Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2010:171-182. [29] SAKURAI Y, PAPADIMITRIOU S, FALOUTSOS C. BRAID:stream mining through group lag correlations[C]//Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2005:599-610. [30] RAKTHANMANON T, CAMPANA B, MUEEN A, et al. Searching and mining trillions of time series subsequences under dynamic time warping[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2012:262-270. [31] BELACHEW M T, GILLIS N. Solving the maximum clique problem with symmetric rank-one non-negative matrix approximation[J]. Journal of Optimization Theory and Applications, 2017, 173(1):279-296. [32] MUEEN A, KEOGH E. Online discovery and maintenance of time series motif[EB/OL]. (2010-06-25)[2017-11-01]. http://alumni.cs.ucr.edu/~mueen/OnlineMotif/. |