[1] RAJPURKAR P, IRVIN J, ZHU K, et al. CheXNet:radiologist-level pneumonia detection on chest X-rays with deep learning[EB/OL]. https://arxiv.org/pdf/1711.05225.pdf. [2] RINALDI P, MENCHINI L, MARTINELLI M, et al. Computer-aided diagnosis[J]. Rays, 2003, 28(1):103-108. [3] ZHAO G, AHONEN T, MATAS J, et al. Rotation-invariant image and video description with local binary pattern features[J]. IEEE Transactions on Image Processing, 2011, 21(4):1465-1477. [4] 吕洪艳,刘芳.组合核函数SVM在特定领域文本分类中的应用[J].计算机系统应用,2016,25(5):124-128.(LYU H Y, LIU F. Application of text classification for specific domains based on combination kernel function SVM[J]. Computer Systems & Applications, 2016, 25(5):124-128.) [5] HERSHEY S, CHAUDHURI S, ELLIS D P W, et al. CNN architectures for largescale audio classification[C]//Proceedings of the 2017 IEEE International Conference on Acoustic, Speech and Signal Processing. Piscataway, NJ:IEEE, 2017:131-135. [6] 刘长征,相文波.基于改进卷积神经网络的肺炎影像判别[J].计算机测量与控制,2017,25(4):185-188.(LIU C Z, XIANG W B. Recognition of pneumonia type based on improved convolution neural network[J]. Computer Measurement & Control, 2017, 25(4):185-188.) [7] KERMANY D S, GOLDBAUM M, CAI W J, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5):1122-1131. [8] VIANNA V P. Study and development of a computer-aided diagnosis system for classification of chest X-ray images using convolutional neural networks pre-trained for ImageNet and data augmentation[EB/OL].[2018-09-16]. https://arxiv.org/pdf/1806.00839v1.pdf. [9] BALLESTER P, ARAUJO R M. On the performance of GoogLeNet and AlexNet applied to sketches[C]//AAAI 2016:Proceedings of the 2016 Thirtieth AAAI Conference on Artificial Intelligence. Menlo Park, CA:AAAI, 2016:1124-1128. [10] MCDONNELL M D, VLADUSICH T. Enhanced image classification with a fast-learning shallow convolutional neural network[C]//Proceedings of the 2015 International Joint Conference on Neural Networks. Piscataway, NJ:IEEE, 2015:1-7. [11] GAUDART J, GIUSIANO B, HUIART L. Comparison of the performance of multi-layer perceptron and linear regression for epidemiological data[J]. Computational Statistics & Data Analysis, 2004, 44(4):547-570. [12] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2015:1-9. [13] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//NIPS 2012:Proceedings of the 25th International Conference on Neural Information Processing Systems. North Miami Beach, FL:Curran Associates Inc., 2012:1097-1105. [14] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016:770-778. [15] ZHANG C L, LUO J H, WEI X S, et al. In defense of fully connected layers in visual representation transfer[C]//PCM 2017:Proceedings of the 201718th Pacific Rim Conference on Multimedia, LNCS 10736. Cham:Springer, 2017:807-817. [16] YUAN J W, YU S C. Privacy preserving back-propagation neural network learning made practical with cloud computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(1):212-221. [17] MORSE G, STANLEY K O. Simple evolutionary optimization can rival stochastic gradient descent in neural networks[C]//GECCO 2016:Proceedings of the 2016 Genetic and Evolutionary Computation Conference. New York:ACM, 2016:477-484. [18] ARTSTEIN-AVIDAN S, KÖNIG H, MILMAN V. The chain rule as a functional equation[J]. Journal of Functional Analysis, 2010, 259(11):2999-3024. [19] BREIMAN L, LAST M, RICE J. Random forests:finding quasars[M]//FEIGELSON E D, BABU G J. Statistical Challenges in Astronomy. New York:Springer, 2003:243-254. [20] PRUSA J D, KHOSHGOFTAAR T M, NAPOLITANO A. Using feature selection in combination with ensemble learning techniques to improve tweet sentiment classification performance[C]//ICTAI 2015:Proceedings of the 2015 IEEE 27th International Conference on Tools with Artificial Intelligence. Washington, DC:IEEE Computer Society, 2015:186-193. [21] BREIMAN L I, FRIEDMAN J H, OLSHEN R A, et al. Classification and Regression Trees (CART)[J]. Encyclopedia of Ecology, 2015, 57(1):582-588. [22] REN X D, GUO H N, LI S H, et al. A novel image classification method with CNN-XGBoost model[C]//IWDW 2017:Proceedings of the 2017 International Workshop on Digital Watermarking, LNCS 10431. Cham:Springer, 2017:378-390. |