1 TUYENL P, VIETH H, ANS H, et al. Univector field method-based multi-agent navigation for pursuit problem in obstacle environments [J]. Journal of Central South University, 2017, 24(4):1002-1012. 2 SOUIDIM E H, PIAOS. A new decentralized approach of multi-agent cooperative pursuit based on the iterated elimination of dominated strategies model [J]. Mathematical Problems in Engineering, 2016, 2016: 5192423.1-5192423.11. 3 SOUIDIM E H, PIAOS, LIG, et al. Multi-agent cooperation pursuit based on an extension of AALAADIN organizational model [J]. Journal of Experimental and Theoretical Artificial Intelligence, 2016, 28(6): 1075-1088. 4 PEIH Q, CHENS, LAIQ. Multi-target consensus circle pursuit for multi-agent systems via a distributed multi-flocking method [J]. International Journal of Systems Science, 2016, 47(16):3741-3748. 5 BHADAURIAD, KLEINK, ISLERV, et al. Capturing an evader in polygonal environments with obstacles: the full visibility case[J]. The International Journal of Robotics Research, 2012, 31(10):1176-1189. 6 SOUIDIM, SIAM AE H, PEIZ Y. Multi-agent pursuit coalition formation based on a limited overlapping of the dynamic groups[J]. Journal of Intelligent and Fuzzy Systems, 2019, 36(6): 5617-5629. 7 肖文雅,尚艳玲.一种基于多Agent的有效负载均衡的WebGIS体系模型[J].河南师范大学学报(自然科学版),2015,43(4):151-156. XIAOW Y, SHANGY L. A loading-balancing framework for distributed WebGIS based on multi-Agent [J]. Journal of Henan Normal University (Natural Science Edition), 2015, 43(4):151-156. 8 李珺,潘启树,周浦城,等.未知环境下多机器人协作追捕算法[J].电子学报,2011,39(3):568-574. LIJ, PANQ S, ZHOUP C, et al. Multi-robot cooperative pursuit algorithm for in an unknown environment [J]. Acta Electronica Sinica, 2011, 39(3):568-574. 9 ASL Z D, DERHAMIV, YAZDIAN-DEHKORDIM. A new approach on multi-agent multi-objective reinforcement learning based on agents’ preferences [C]// Proceedings of the 2017 Artificial Intelligence and Signal Processing Conference. Piscataway: IEEE, 2017:75-79. 10 BILGINA T, KADIOGLU-URTISE. An approach to multi-agent pursuit-evasion games using reinforcement learning [C]// Proceedings of the 2015 International Conference on Advanced Robotics. Piscataway: IEEE, 2015:164-169. 11 QAIRM Z, PIAOS, JIANGH, et al. A novel approach for multi-agent cooperative pursuit to capture grouped evaders [J]. The Journal of Supercomputing, 2018,76: 3416–3426. 12 郑延斌,陶雪丽,段领玉,等.基于博弈论及惩罚机制的多Agent协作控制算法[J].河南师范大学学报(自然科学版),2015,43(6):146-151. ZHENGY B, TAOX L, DUANL Y, et al. The algorithm for multi-Agent cooperation controlling based on game theory and punishment mechanism [J]. Journal of Henan Normal University (Natural Science Edition), 2015, 43(6): 146-151. 13 FANGB, ZHUJ, ZHANGH, et al. Multi Self-interested robot pursuit based on quantum game theory [C]// Proceedings of the 2017 Chinese Automation Congress. Piscataway: IEEE, 2017:7368-7373. 14 晏亚林.基于博弈论的多机器人追捕问题的研究[D].哈尔滨:哈尔滨工程大学,2014:16-22. YANY L. Research on multi-robot pursuit-evasion based on game theory [D]. Harbin: Harbin Engineering University, 2014: 16-22. 15 HAKLIR. Cooperative human-robot planning with team reasoning[J]. International Journal of Social Robotics, 2017, 9(5):643-658. 16 ZHANGC, LIQ, ZHUY, et al. Dynamics of task allocation based on game theory in multi-agent systems [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(6):1068-1072. 17 《现代应用数学手册》编委会.现代应用数学手册:运筹学与最优化理论卷[M].北京:清华大学出版社,1998:371-454. Editorial Board of Modern Applied Mathematics Handbook. Handbook of Modern Applied Mathematics: Operations Research and Optimization Theory Volume [M]. Beijing: Tsinghua University Press, 1998: 371-454. 18 MNIHV, KAVUKCUOGLUK, SILVERD, et al. Human-level control through deep reinforcement learning [J]. Nature, 2015, 518(7540): 529-533. 19 YUANY, YUZ L, GUZ, et al. A novel multi-step Q-learning method to improve data efficiency for deep reinforcement learning[J]. Knowledge-Based Systems, 2019, 175: 107-117. 20 LAVALLES M. Robot motion planning: a game-theoretic foundation [J]. Algorithmica, 2000, 26(3/4): 430-465. 21 程志,张志安,李金芝,等.改进人工势场法的移动机器人路径规划[J].计算机工程与应用,2019,55(23):29-34. CHENGZ, ZHANGZ A, LIJ Z, et al. Mobile robots path planning based on improved artificial potential field [J]. Computer Engineering and Applications, 2019, 55(23): 29-34. 22 SUNS, YING, LIX, et al. Path planning for mobile robot using the novel repulsive force algorithm [J]. IOP Conference Series: Earth and Environmental Science, 2018, 108(5): Article No. 052067. |