[1] 周立柱,贺宇凯,王建勇. 情感分析研究综述[J]. 计算机应用, 2008, 28(11):2725-2728. (ZHOU L Z, HE Y K, WANG J Y. Survey on research of sentiment analysis[J]. Journal of Computer Applications, 2008, 28(11):2725-2728.) [2] KIRITCHENKO S, ZHU X, CHERRY C, et al. NRC-Canada-2014:Detecting aspects and sentiment in customer reviews[C]//Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg:Association for Computational Linguistics, 2014:437-442. [3] VO D T, ZHANG Y. Target-dependent twitter sentiment classification with rich automatic features[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press, 2015:1347-1353. [4] BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model[J]. The Journal of Machine Learning Research, 2003, 3:1137-1155. [5] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc., 2013:3111-3119. [6] LE Q, MIKOLOV T. Distributed representations of sentences and documents[C]//Proceedings of the 31st International Conference on Machine Learning. New York:JMLR.org, 2014:1188-1196. [7] PENNINGTON J, SOCHER R, MANNING C. Glove:global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2014:1532-1543. [8] TANG D, QIN B, FENG X, et al. Effective LSTMs for target-dependent sentiment classification[C]//Proceedings of the 26th International Conference on Computational Linguistic. Stroudsburg:Association for Computational Linguistics, 2016:3298-3307. [9] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL].[2019-11-24]. https://arxiv.org/pdf/1409.0473.pdf. [10] WANG Y, HUANG M, ZHU X, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 2016:606-615. [11] MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press, 2017:4068-4074. [12] 李丽双,周安桥,刘阳,等. 基于动态注意力GRU的特定目标情感分类[J]. 中国科学:信息科学, 2019(8):1019-1030. (LI L S, ZHOU A Q, LIU Y, et al. Aspect-based sentiment analysis based on dynamic attention GRU[J]. SCIENTIA SINICA Informationis, 2019(8):1019-1030.) [13] LI X, BING L, LAM Y, et al. Transformation networks for target-oriented sentiment classification[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2018:946-956. [14] 粱斌,刘全,徐进,等. 基于多注意力卷积神经网络的特定目标情感分析[J]. 计算机研究与发展, 2017, 54(8):1724-1735. (LIANG B, LIU Q, XU J, et al. Aspect-based sentiment analysis based on multi-attention CNN[J]. Journal of Computer Research and Development, 2017, 54(8):1724-1735.) [15] XUE W, LI T. Aspect based sentiment analysis with gated convolutional networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2018:2514-2523. [16] HE R, WEE S L, NG H T, et al. Effective attention modeling for aspect-level sentiment classification[C]//Proceedings of the 27th International Conference on Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2018:1121-1131. [17] DEVLIN J, CHANG M W, LEE K, et al. BERT:pre-training of deep bidirectional transformers for language understanding[EB/OL].[2019-10-24].https://arxiv.org/pdf/1810.04805.pdf. [18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2017:6000-6010. [19] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].[2019-10-25].https://arxiv.org/pdf/1609.02907.pdf. [20] PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 task4:aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation. Stroudsburg:Association for Computational Linguistics, 2014:27-35. [21] DONG L, WEI F, TAN C, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2014:49-54. [22] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [23] ZHANG C, LI Q, SONG D. Aspect-based sentiment classification with aspect-specific graph convolutional networks[EB/OL].[2019-11-13].https://arxiv.org/pdf/1909.03477.pdf. [24] SONG Y, WANG J, JIANG T, et al. Attentional encoder network for targeted sentiment classification[EB/OL].[2019-11-15].https://arxiv.org/pdf/1902.09314.pdf. |