[1] 简毅, 张月. 移动机器人全局覆盖路径规划算法研究进展与展望[J]. 计算机应用,2014,34(10):2844-2849,2864.(JIAN Y, ZHANG Y. Complete coverage path planning algorithm for mobile robot:progress and prospect[J]. Journal of Computer Applications,2014,34(10):2844-2849,2864.) [2] 赵燕江, 黄磊, 杜海艳, 等. 基于改进RRT算法的套管柔性针运动规划[J]. 仪器仪表学报,2017,38(3):620-628.(ZHAO Y J, HUANG L,DU H Y,et al. Motion planning of the cannula flexible needle based on the improved RRT algorithm[J]. Chinese Journal of Scientific Instrument,2017,38(3):620-628.) [3] 周慧子, 胡学敏, 陈龙, 等. 面向自动驾驶的动态路径规划避障算法[J]. 计算机应用,2017,37(3):883-888.(ZHOU H Z,HU X M,CEHN L,et al. Dynamic path planning for autonomous driving with avoidance of obstacles[J]. Journal of Computer Applications, 2017,37(3):883-888.) [4] 丁家如, 杜昌平, 赵耀, 等. 基于改进人工势场法的无人机路径规划算法[J]. 计算机应用,2016,36(1):287-290.(DING J R,DU C P,ZHAO Y,et al. Path planning algorithm for unmanned aerial vehicles based on improved artificial potential field[J]. Journal of Computer Applications,2016,36(1):287-290.) [5] 王维, 裴东, 冯璋. 改进A*算法的移动机器人最短路径规划[J]. 计算机应用,2018,38(5):1523-1526.(WANG W,PEI D, FENG Z. The shortest path planning for mobile robots using improved A* algorithm[J]. Journal of Computer Applications, 2018,38(5):1523-1526.) [6] 韩明, 刘教民, 吴朔媚, 等. 粒子群优化的移动机器人路径规划算法[J]. 计算机应用,2017,37(8):2258-2263.(HAN M,LIU J M,WU S M,et al. Path planning algorithm of mobile robot based on particle swarm optimization[J]. Journal of Computer Applications,2017,37(8):2258-2263.) [7] GASPARRI A,OLIVA G,PANZIERI S. Path planning using a lazy spatial network PRM[C]//Proceedings of the 17th Mediterranean Conference on Control and Automation. Piscataway:IEEE,2009:940-945. [8] LAVALLE S M,KUFFNER J J,Jr. Rapidly-exploring random trees:progress and prospects[M]//DONALD B R,LYNCH K, RUS D. Algorithmic and Computational Robotics:New Directions 2000 WAFR. Natick,MA:A K Peters,2001:293-308. [9] KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The International Journal of Robotics Research,2011,30(7):846-894. [10] YERSHOVA A,JAILLET L,SIMEON T,et al. Dynamic-domain RRTs:efficient exploration by controlling the sampling domain[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Piscataway:IEEE,2005:3856-3861. [11] 温乃峰, 苏小红, 马培军, 等. 低空复杂环境下基于采样空间约减的无人机在线航迹规划算法[J]. 自动化学报,2014,40(7):1376-1390.(WEN N F,SU X H,MA P J,et al. Sampling space reduction-based UAV online path planning algorithm in complex low altitude environments[J]. Acta Automatica Sinica,2014,40(7):1376-1390.) [12] ISLAM F, NASIR J, MALIK U, et al. RRT* -Smart:rapid convergence implementation of RRT* towards optimal solution[C]//Proceedings of the 2012 IEEE International Conference on Mechatronics and Automation. Piscataway:IEEE,2012:1651-1656. [13] NOREEN I,KHAN A,RYU H,et al. Optimal path planning in cluttered environment using RRT* -AB[J]. Intelligent Service Robotics,2018,11(1):41-52. [14] GAMMELL J D,SRINIVASA S S,BARFOOT T D. Informed RRT*:optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//Proceedings of the 2014 IEEE/RSJ Intelligent Robots and Systems. Piscataway:IEEE,2014:2997-3004. [15] ADIYATOV O,VAROL H A. Rapidly-exploring random tree based memory efficient motion planning[C]//Proceedings of the 2013 IEEE International Conference on Mechatronics and Automation. Piscataway:IEEE,2013:354-359. [16] 谭建豪, 潘豹, 王耀南, 等. 基于改进RRT*FN算法的机器人路径规划[J/OL]. 控制与决策[2020-10-11]. https://kns.cnki.net/kcms/detail/21.1124.TP.20200502.1506.012.html. (TAN J H,(PAN B,WANG Y N,et al. Robot path planning based on improved RRT*FN algorithm[J/OL]. Control and Decision[2020-10-11]. https://kns.cnki.net/kcms/detail/21.1124.TP.20200502.1506.012.) [17] XIA C,ZHANG Y,CHEN I M. Learning sampling distribution for motion planning with local reconstruction-based self-organizing incremental neural network[J]. Neural Computing and Applications,2019,31(12):9185-9205. |