[1] GEORGE G, HAAS M R, PENTLAND A. Big data and management[J]. Academy of Management Journal,2014,57(2):321-326. [2] 谢娟英, 谢维信. 基于特征子集区分度与支持向量机的特征选择算法[J]. 计算机学报, 2014, 37(8):1704-1718.(XIE J Y,XIE W X. Several feature selection algorithms based on the discernibility of a feature subset and support vector machines[J]. Chinese Journal of Computers,2014,37(8):1704-1718.) [3] KWAK N,CHOI C H. Input feature selection for classification problems[J]. IEEE Transactions on Neural Networks,2002,13(1):143-159. [4] ESTEVEZ P A,TESMER M,PEREZ C A,et al. Normalized mutual information feature selection[J]. IEEE Transactions on Neural Networks,2009,20(2):189-201. [5] HOQUE N,BHATTACHARYYA D K,KALITA J K. MIFS-ND:a mutual information-based feature selection method[J]. Expert Systems with Applications,2014,41(14):6371-6385. [6] YANG H H,MOODY J. Feature selection based on joint mutual information[EB/OL].[2020-01-03]. http://pdfs.semanticscholar.org/dd69/1540c3f28decb477a7738f16aa92709b0f59.pdf. [7] VINH L T,LEE S,PARK Y T,et al. A novel feature selection method based on normalized mutual information[J]. Applied Intelligence,2012,37(1):100-120. [8] LEE J,KIM D W. Mutual Information-based multi-label feature selection using interaction information[J]. Expert Systems with Applications,2015,42(4):2013-2025. [9] KONONENKO I. Estimation attributes:analysis and extension of RELIEF[C]//Proceedings of the 1994 European Conference on Machine Learning,LNCS 784. Berlin:Springer,1994:171-182. [10] FLEURET F. Fast binary feature selection with conditional mutual information[J]. Journal of Machine Learning Research,2004,5:1531-1555. [11] YANG H H,MOODY J. Data visualization and feature selection:new algorithms for nongaussian data[C]//Proceedings of the 200012th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2000:687-693. [12] PENG H,LONG F,DING C. Feature selection based on mutual information:criteria of max-dependency,max-relevance,and minredundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1226-1238. [13] VINH L T,THANG N D,LEE Y K. An improved maximum relevance and minimum redundancy feature selection algorithm based on normalized mutual information[C]//Proceedings of the 201010th IEEE/IPSJ International Symposium on Applications and the Internet. Piscataway:IEEE,2010:395-398. [14] MEYER P E, SCHRETTER C, BONTEMPI G. Informationtheoretic feature selection in microarray data using variablecomplementarity[J]. IEEE Journal of Selected Topics in Signal Processing,2008,2(3):261-274. [15] 段宏湘, 张秋余, 张墨逸. 基于归一化互信息的FCBF特征选择算[J]. 华中科技大学学报(自然科学版), 2017, 45(1):52-56. (DUAN H X,ZHANG Q Y,ZHANG M Y. FCBF algorithm based on normalized mutual information for feature selection[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2017,45(1):52-56.) [16] JOHN G H,KOHAVI R,PFLEGER K. Irrelevant features and the subset selection problem[C]//Proceedings of the 199411th International Conference on Machine Learning. San Francisco:Morgan Kaufmann Publisher,1994:121-129. [17] 张俐, 王枞. 基于最大相关最小冗余联合互信息的多标签特征选择算法[J]. 通信学报, 2018, 39(5):111-122.(ZHANG L, WANG C. Multi-label feature selection algorithm based on mutual information of max-relevance and min-redundancy[J]. Journal on Communications,2018,39(5):111-122.) [18] YANG Y. Book Review of Elements of Information Theory by COVER T M,THOMAS J A[J]. Publications of the American Statal Association,2008,103:429-429. [19] 张振海, 李士宁, 李志刚, 等. 一类基于信息熵的多标签特征选择算法[J]. 计算机研究与发展, 2013, 50(6):1177-1184. (ZHANG Z H,LI S N,LI Z G,et al. Multi-label feature selection algorithm based on information entropy[J]. Journal of Computer Research and Development,2013,50(6):1177-1184.) [20] LIN Y,HU Q,LIU J,et al. Multi-label feature selection based on max-dependency and min-redundancy[J]. Neurocomputing, 2015,168:92-103. [21] RAHMANINIA M,MORADI P. OSFSMI:online stream feature selection method based on mutual information[J]. Applied Soft Computing,2018,68:733-746. [22] 牛晓太. 基于KNN算法和10折交叉验证法的支持向量选取算法[J]. 华中师范大学学报(自然科学版), 2014, 48(3):335-338.(NIU X T. Support vector extracted algorithm based on KNN and 10 fold cross-validation method[J]. Journal of Huazhong Normal University(Natural Sciences),2014,48(3):335-338.) |