[1] 蔡飞龙. 京剧脸谱数字化建模与绘制技术研究[D]. 杭州:浙江大学,2012:22-36.(CAI F L. Digital modeling and rendering of facial makeup in Peking Opera[D]. Hangzhou:Zhejiang University,2012:22-36.) [2] 原娜. 视频中人脸的京剧脸谱映射[D]. 济南:山东大学,2011:16-22.(YUAN N. Mapping the Peking Opera facial makeup onto a human face in video sequences[D]. Jinan:Shandong University, 2012:16-22.) [3] 贾晓琪. 基于面部特征的京剧脸谱人脸投影方法的研究与应用[D]. 北京:北京工业大学,2017:8-13.(JIA X Q. Research and application of face projection method based on facial features of Peking Opera[D]. Beijing:Beijing University of Technology, 2017:8-13.) [4] 张朋. SVM在京剧脸谱图像识别上的应用研究[D]. 北京:北京工业大学,2017:11-14.(ZHANG P. Research on the application of SVM in the recognition of Peking Opera facial image[D]. Beijing:Beijing University of Technology,2017:11-14.) [5] 郝占军, 张岱阳, 党小超. 一种基于CSI的非接触式人员动作识别方法[J/OL]. 计算机工程[2020-08-18]. https://doi.org/10.19678/j.issn.1000-3428.0057612. (HAO Z J,ZHANG D Y, DANG X C. A non-contact human action recognition method based on CSI[J/OL]. Computer Engineering[2020-08-18]. https://doi.org/10.19678/j.issn.1000-3428.0057612.) [6] 张犁, 程甘霖. 京剧服装中戏曲符号的呈现及美学特征[J]. 西安工程大学学报,2014,28(5):631-635.(ZHANG L,CHENG G L. The presentation of opera symbol and its aesthetic characteristics in Peking opera costume[J]. Journal of Xi' an University of Technology,2014,28(5):631-635.) [7] 韩波. 美如锦绣——京剧服装之长衣[J]. 中国京剧,2019(11):58-63. (HAN B. Beautiful as brocade:robe of Peking Opera costume[J]. Jingju of China,2019(11):58-63.) [8] 韩波. 美如锦绣——京剧服装之蟒[J]. 中国京剧,2019(6):53-57. (HAN B. Beautiful as brocade:Mang clothes of Peking Opera costume[J]. Jingju of China,2019(6):53-57.) [9] 宋德风, 赵倩倩. 京剧服饰图案的艺术特征[J]. 西部皮革, 2020,42(1):97.(SONG D F,ZHAO Q Q. Artistic features of costume patterns in Peking Opera[J]. West Leather,2020,42(1):97.) [10] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324. [11] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2012:1097-1105. [12] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-10-22]. https://arxiv.org/pdf/1409.1556.pdf. [13] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [14] HOWARD A,ZHU M,CHEN B,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2020-10-22]. https://arxiv.org/pdf/1704.04861.pdf. [15] ZHANG N, DONAHUE J, GIRSHICK R, et al. Part-based RCNNs for fine-grained category detection[C]//Proceedings of the 2014 European Conference on Computer Vision,LNCS 8689. Cham:Springer,2014:834-849. [16] BRANSON S,VAN HORN G,PERONA P. Lean crowdsourcing:combining humans and machines in an online system[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6109-6118. [17] WEI X,XIE C,WU J,et al. Mask-CNN:localizing parts and selecting descriptors for fine-grained bird species categorization[J]. Pattern Recognition,2018,76:704-714. [18] LIN T Y,ROYCHOWDHURY A,MAJI S. Bilinear convolutional neural networks for fine-grained visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2018, 40(6):1309-1322. [19] FU J,ZHENG H,MEI T. Look closer to see better:recurrent attention convolutional neural network for fine-grained image recognition[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:4476-4484. [20] SUN H, LI S, ZHENG X, et al. Remote sensing scene classification by gated bidirectional network[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(1):82-96. [21] 霍煜豪, 徐志京. 基于改进RA-CNN的舰船光电目标识别方法[J]. 上海海事大学学报,2019,40(3):38-43.(HUO Y H,XU Z J. Photoelectric ship target identification method based on improved RA-CNN[J]. Journal of Shanghai Maritime University, 2019,40(3):38-43.) [22] HARIHARAN B, ARBELÁEZ P, GIRSHICK R, et al. HyperColumns for object segmentation and fine-grained localization[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:447-456. [23] 乐娟. 基于Trie树的京剧术语语义词典[J]. 计算机工程, 2011,37(S1):30-32.(LE J. Beijing Opera professional words semantic dictionary based on Trie tree[J]. Computer Engineering, 2011,37(S1):30-32.) [24] 董新颖. 大数据背景下多模态京剧术语数据库设计与创建探析[J]. 中国戏剧,2019(8):52-54.(DONG X Y. Design and creation of multimodal Beijing Opera terminology database under the background of big data[J]. Chinese Theatre,2019(8):52-54.) [25] 谭元杰. 中国京剧服装图谱[M]. 北京:北京工艺美术出版社, 2008:109-111.(TAN Y J. China Costume Art of Peking Opera[M]. Beijing:Beijing Arts and Crafts Publishing House,2008:109-111.) [26] 杨冠灿, 卢小宾. 面向数字人文的京剧脸谱图像数字资源构建[J]. 档案学通讯,2020(3):38-44. (YANG G C,LU X B. Digital resource construction of Peking Opera facial images for digital humanities[J]. Archives Science Bulletin,2020(3):38-44.) |