[1] 王梦恬, 魏晶晶, 廖祥文, 等. 融合评论标签的个性化推荐算法[J]. 计算机科学与探索,2016,10(10):1429-1438.(WANG M T,WEI J J,LIAO X W,et al. Personalized recommendation algorithm fusing comment tag[J]. Journal of Frontiers of Computer Science and Technology,2016,10(10):1429-1438.) [2] 孙松涛, 何炎祥. 基于CNN特征空间的微博多标签情感分类[J]. 工程科学与技术,2017,49(3):162-169.(SUN S T,HE Y X. Multi-label emotion classification for microblog based on CNN feature space[J]. Advanced Engineering Sciences,2017,49(3):162-169.) [3] 吴磊, 岳峰, 王含茹, 等. 一种融合科研人员标签的学术论文推荐方法[J]. 计算机科学,2020,47(2):51-57.(WU L,YUE F, WANG H R, et al. Academic paper recommendation method combined with researcher tag[J]. Computer Science,2020,47(2):51-57.) [4] BELÉM F M,ALMEIDA J M,GONÇALVES M A. A survey on tag recommendation methods[J]. Journal of the Association for Information Science and Technology,2017,68(4):830-844. [5] PUJARI M, KANAWATI R. Tag recommendation by link prediction based on supervised machine learning[C]//Proceedings of the 6th International Conference on Weblogs and Social Media. Palo Alto,CA:AAAI Press,2012:547-550. [6] MARTINS E F,BELÉM F M,ALMEIDA J M,et al. On cold start for associative tag recommendation[J]. Journal of the Association for Information Science and Technology,2016,67(1):83-105. [7] KRESTEL R,FANKHAUSER P,NEJDL W. Latent Dirichlet allocation for tag recommendation[C]//Proceedings of the 3rd ACM Conference on Recommender Systems. New York:ACM,2009:61-68. [8] RAMAGE D,HALL D,NALLAPATI R,et al. Labeled LDA:a supervised topic model for credit attribution in multi-labeled corpora[C]//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2009,248-256. [9] WU Y,YAO Y,XU F,et al. Tag2Word:using tags to generate words for content based tag recommendation[C]//Proceedings of the 25th ACM International Conference on Information and Knowledge Management. New York:ACM,2016:2287-2292. [10] WU Y,XI S,YAO Y,et al. Guiding supervised topic modeling for content based tag recommendation[J]. Neurocomputing, 2018,314:479-489. [11] LECUN Y,BENGIO Y,HINTON G. Deep learning[J]. Nature, 2015,521(7553):436-444. [12] WESTON J, CHOPRA S, ADAMS K. #TagSpace:semantic embeddings from hashtags[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2014,1822-1827. [13] ZHANG Q, WANG J, HUANG H, et al. Hashtag recommendation for multimodal microblog using co-attention network[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press,2017:3420-3426. [14] GUO Z,ZHANG Z M,ZHU S,et al. A two-level topic model towards knowledge discovery from citation networks[J]. IEEE Transactions on Knowledge and Data Engineering,2014,26(4):780-794. [15] WEST J D, WESLEY-SMITH I, BERGSTROM C T. A recommendation system based on hierarchical clustering of an article-level citation network[J]. IEEE Transactions on Big Data, 2016,2(2):113-123. [16] KIPF T N,WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].[2020-05-20]. https://arxiv.org/pdf/1609.02907.pdf. [17] SHI X,HUANG H,ZHAO S,et al. Tag recommendation by wordlevel tag sequence modeling[C]//Proceedings of the 2019 International Conference on Database Systems for Advanced Applications,LNCS 11448. Cham:Springer,2019:420-424. [18] FENG W,WANG J. Incorporating heterogeneous information for personalized tag recommendation in social tagging systems[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2012:1276-1284. [19] FANG X, PAN R, CAO G, et al. Personalized tag recommendation through nonlinear tensor factorization using Gaussian kernel[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press, 2015:439-445 [20] ZHAO W, GUAN Z Y, LIU Z. Ranking on heterogeneous manifolds for tag recommendation in social tagging services[J]. Neurocomputing,2015,148:521-534. [21] SI X,SUN M. Tag-LDA for scalable real-time tag recommendation[J]. Journal of Information and Computational Systems,2009,6(2):1009-1016. [22] DING Z,QIU X,ZHANG Q,et al. Learning topical translation model for microblog hashtag suggestion[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2013:2078-2084. [23] GODIN F,SLAVKOVIKJ V,DE NEVE W,et al. Using topic models for Twitter hashtag recommendation[C]//Proceedings of the 22nd International Conference on World Wide Web s Steering Committee. New York:ACM,2013:593-596. [24] GONG Y,ZHANG Q. Hashtag recommendation using attentionbased convolutional neural network[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2016:2782-2788. [25] LI Y,LIU T,JIANG J,et al. Hashtag recommendation with topical attention-based LSTM[C]//Proceedings of the 26th International Conference on Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2016:3019-3029. [26] HUANG H, ZHANG Q, GONG Y, et al. Hashtag recommendation using end-to-end memory networks with hierarchical attention[C]//Proceedings of the 26th International Conference on Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics,2016:943-952. [27] LI J,XU H,HE X,et al. Tweet modeling with LSTM recurrent neural networks for hashtag recommendation[C]//Proceedings of the 2016 International Joint Conference on Neural Networks. Piscataway:IEEE,2016:1570-1577. [28] TANG S, YAO Y, ZHANG S, et al. An integral tag recommendation model for textual content[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:5109-5116. [29] SHI M, TANG Y, LIU J. TA-BLSTM:tag attention-based bidirectional long short-term memory for service recommendation in mashup creation[C]//Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway:IEEE,2019:1-8. [30] YAO L,MAO C,LUO Y. Graph convolutional networks for text classification[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:7370-7377. [31] BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model[J]. Journal of Machine Learning Research,2003,3:1137-1155. [32] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2013:3111-3119. [33] HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. [34] CHUNG J,GULCEHRE C,CHO K,et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL].[2020-06-03]. https://arxiv.org/pdf/1412.3555.pdf. [35] XU M,JIN R,ZHOU Z. Speedup matrix completion with side information:application to multi-label learning[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc., 2013:2301-2309. [36] KINGMA D P, BA J L. Adam:a method for stochastic optimization[EB/OL].[2020-06-03]. https://arxiv.org/pdf/1412.6980.pdf. |