Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (8): 2346-2351.DOI: 10.11772/j.issn.1001-9081.2020091486

Special Issue: 前沿与综合应用

• Frontier and comprehensive applications • Previous Articles     Next Articles

Real-time remaining life prediction method of Web software system based on self-attention-long short-term memory network

DANG Weichao, LI Tao, BAI Shangwang, GAO Gaimei, LIU Chunxia   

  1. College of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan Shanxi 030024, China
  • Received:2020-09-24 Revised:2020-11-18 Online:2021-08-10 Published:2021-04-07
  • Supported by:
    This work is partially supported by the Research Program of Application Foundation of Shanxi Province (201901D111266).

基于自注意力长短期记忆网络的Web软件系统实时剩余寿命预测方法

党伟超, 李涛, 白尚旺, 高改梅, 刘春霞   

  1. 太原科技大学 计算机科学与技术学院, 太原 030024
  • 通讯作者: 李涛
  • 作者简介:党伟超(1974-),男,山西运城人,副教授,博士,CCF会员,主要研究方向:智能计算、软件可靠性;李涛(1996-),男,山西长治人,硕士研究生,主要研究方向:软件可靠性;白尚旺(1964-),男,山西吕梁人,教授,硕士,主要研究方向:智能软件系统;高改梅(1978-),女,山西吕梁人,讲师,博士,CCF会员,主要研究方向:网络安全、密码学;刘春霞(1977-),女,山西大同人,副教授,硕士,CCF会员,主要研究方向:软件工程、数据库。
  • 基金资助:
    山西省应用基础研究计划项目(201901D111266)。

Abstract: In order to predict the Remaining Useful Life (RUL) of Web software system in real time and accurately, taking into consideration the time sequence characteristics of the Web system health status performance indicators and the interdependence between the indicators, a real-time remaining life prediction method of Web software system based on Self-Attention-Long Short-Term Memory (Self-Attention-LSTM) network was proposed. Firstly, an accelerated life test platform was built to collect the performance indicators data reflecting the aging trend of the Web software system. Then, according to the time sequence characteristics of the performance indicators data, a Long Short-Term Memory (LSTM) recurrent neural network was constructed to extract the hidden layer characteristics of the performance indicators, and the self-attention mechanism was used to model the dependency relationship between the characteristics. Finally, the real-time RUL prediction value of the Web system was obtained. On three test sets, the proposed model was compared with the Back Propagation (BP) network and the conventional Recurrent Neural Network (RNN). Experimental results show that the Mean Absolute Error (MAE) of the model is 16.92% lower than that of LSTM on average, and the relative accuracy (Accuracy) of the model is 5.53% higher than that of LSTM on average, which verify the effectiveness of the RUL model of Self-Attention-LSTM network. It can be seen that the proposed method can provide technical support for optimizing the software rejuvenation decision of the Web system.

Key words: Web software system, Remaining Useful Life (RUL), Long Short-Term Memory (LSTM) network, self-attention mechanism, rejuvenation decision

摘要: 为了能够实时准确对Web软件系统的剩余使用寿命(RUL)进行预测,考虑Web系统健康状态性能指标的时序特性和指标间的相互依赖特性,提出了一种基于自注意力长短期记忆(Self-Attention-LSTM)网络的Web软件系统实时剩余寿命预测方法。首先,搭建加速寿命测试实验平台来收集反映Web软件系统老化趋势的性能指标数据;然后,根据该性能指标数据的时序特性来构建长短期记忆(LSTM)循环神经网络以提取性能指标的隐含层特征,并使用自注意力机制建模特征间的依赖关系;最后,得到系统RUL的实时预测值。在三组测试集上,把所提模型与反向传播(BP)网络和常规的循环神经网络(RNN)做了对比。实验结果表明,所提模型的平均绝对误差(MAE)比长短期记忆(LSTM)网络平均低16.92%,相对准确率(Accuracy)比LSTM网络平均高5.53%,验证了Self-Attention-LSTM网络剩余寿命预测模型的有效性。可见所提方法能为优化系统抗衰决策提供技术支撑。

关键词: Web软件系统, 剩余使用寿命, 长短期记忆网络, 自注意力机制, 抗衰决策

CLC Number: