[1] WU X X, ZHENG W, PU M C, et al. Invalid bug reports complicate the software aging situation[J]. Software Quality Control,2020,28(1):195-200. [2] HUANG Y, KINTALA C, KOLETTIS N, et al. Software rejuvenation:analysis,module and applications[C]//Proceedings of the 25th International Symposium on Fault-Tolerant Computing. Piscataway:IEEE,1995:381-390. [3] ZHENG J J, OKAMURA H, DOHI T. A transient interval reliability analysis for software rejuvenation models with phase expansion[J]. Software Quality Control,2020,28(1):173-194. [4] YAN Y Q,GUO P. A practice guide of software aging prediction in a web server based on machine learning[J]. China Communications,2016,13(6):225-235. [5] 梁佩. 基于WEB技术的软件老化趋势预测研究[D]. 哈尔滨:哈尔滨工程大学, 2013:15-25.(LIANG P. Research on the tendency of software aging for the WEB technology developed software[D]. Harbin:Harbin Engineering University,2013:15-25.) [6] 谭宇宁, 党伟超, 潘理虎, 等. 基于SATLSTM的Web系统老化趋势预测[J]. 计算机应用与软件,2020,37(4):17-24.(TAN Y N,DANG W C,PAN L H,et al. Prediction of Web system aging trend based on SATLSTM[J]. Computer Applications and Software,2020,37(4):17-24.) [7] 于震梁, 孙志礼, 曹汝男, 等. 基于支持向量机和卡尔曼滤波的机械零件剩余寿命预测模型研究[J]. 兵工学报,2018,39(5):991-997.(YU Z L,SUN Z L,CAO R N,et al. Research on remaining useful life predictive model of machine parts based on SVM and Kalman filter[J]. Acta Armamentarii,2018,39(5):991-997.) [8] 秦松, 贾银山. 支持向量机算法的并行实现技术研究[J]. 微处理机,2010,31(5):42-45.(QIN S,JIA Y S. The research of parallel algorithm for Support Vector Machines[J]. Microprocessor,2010,31(5):42-45.) [9] AHMAD S,LAVIN A,PURDY S,et al. Unsupervised real-time anomaly detection for streaming data[J]. Neurocomputing,2017, 262:134-147. [10] 闫楚良, 郝云霄, 刘克格. 基于遗传算法优化的BP神经网络的材料疲劳寿命预测[J]. 吉林大学学报(工学版),2014,44(6):1710-1715. (YAN C L,HAO Y X,LIU K G. Fatigue life prediction of materials based on BP neural networks optimized by genetic algorithm[J]. Journal of Jilin University(Engineering and Technology Edition),2014,44(6):1710-1715.) [11] 王佳炜, 王召斌, 黄周霖. 果蝇算法优化的BP神经网络在电磁继电器贮存寿命预测中的应用[J]. 电器与能效管理技术, 2019(2):19-24. (WANG J W,WANG Z B,HUANG Z L. Application of BP neural network optimized by drosophila algorithm in storage life prediction of electromagnetic relay[J]. Electrical and Energy Management Technology, 2019(2):19-24.) [12] ZHANG A S,WANG H L,LI S B,et al. Transfer learning with deep recurrent neural networks for remaining useful life estimation[J]. Applied Sciences,2018,8(12):No. 2416. [13] 胡天中, 余建波. 基于多尺度分解和深度学习的锂电池寿命预测[J]. 浙江大学学报(工学版),2019,53(10):1852-1864. (HU T Z,YU J B. Life prediction of lithium-ion batteries based on multiscale decomposition and deep learning[J]. Journal of Zhejiang University(Engineering Edition),2019,53(10):1852-1864.) [14] WU Y T,YUAN M,DONG S P,et al. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks[J]. Neurocomputing,2018,275:167-179. [15] LAI G K,CHANG W C,YANG Y M,et al. et al. Modeling longand short-term temporal patterns with deep neural networks[C]//Proceedings of the 41th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM,2018:95-104. [16] CHENG J P,DONG L,LAPATA M. Long short-term memorynetworks for machine reading[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2016:551-561. [17] LI W J,QI F,TANG M,et al. Bidirectional LSTM with selfattention mechanism and multi-channel features for sentiment classification[J]. Neurocomputing,2020,387:63-77. [18] 周治平, 张威. 结合视觉属性注意力和残差连接的图像描述生成模型[J]. 计算机辅助设计与图形学学报,2018,30(8):156-162.(ZHOU Z P,ZHANG W. An image caption generation model based on visual concept attention and residual connection[J]. Journal of Computer-Aided Design and Computer Graphics,2018, 30(8):156-162.) [19] LUONG T,PHAM H,MANNING C D. Effective approaches to attention-based neural machine translation[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2015:1412-1421. [20] YIN Y C,COOLEN F P A,COOLEN-MATURI T. An imprecise statistical method for accelerated life testing using the powerWeibull model[J]. Reliability Engineering and System Safety, 2017,167:158-167. [21] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research,2014,15:1929-1958. |