Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (10): 3070-3074.DOI: 10.11772/j.issn.1001-9081.2020111752
Special Issue: 前沿与综合应用
• Frontier and comprehensive applications • Previous Articles Next Articles
LAI Zicheng, ZHANG Yuping, MA Yan
Received:
2020-11-10
Revised:
2021-02-04
Online:
2021-10-27
Published:
2021-10-10
Supported by:
赖自成, 张玉萍, 马燕
通讯作者:
张玉萍
作者简介:
赖自成(1995-),男,江西萍乡人,硕士研究生,主要研究方向:深度强化学习、有机化学反应预测;张玉萍(1963-),女,浙江宁波人,教授,博士,主要研究方向:深度强化学习、人工智能;马燕(1970-),女,上海人,教授,博士,主要研究方向:机器学习、深度强化学习、人工智能。
基金资助:
CLC Number:
LAI Zicheng, ZHANG Yuping, MA Yan. Prediction of organic reaction based on gated graph convolutional neural network[J]. Journal of Computer Applications, 2021, 41(10): 3070-3074.
赖自成, 张玉萍, 马燕. 基于门控图卷积神经网络的有机化学反应预测[J]. 计算机应用, 2021, 41(10): 3070-3074.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2020111752
[1] SUN M Y, ZHAO S D, GILVARY C, et al. Graph convolutional networks for computational drug development and discovery[J]. Briefings in Bioinformatics, 2020, 21(3):919-935. [2] 刘伊迪, 杨骐, 李遥, 等. 机器学习在有机化学中的应用[J]. 有机化学, 2020, 40(11):3812-3827.(LIU Y D, YANG Q, LI Y, et al. Application of machine learning in organic chemistry[J]. Chinese Journal of Organic Chemistry, 2020, 40(11):3812-3827.) [3] 李秉轲, 丛湧, 田之悦, 等. 基于分子描述符和机器学习方法预测和虚拟筛选MMP-13对MMP-1的选择性抑制剂[J]. 物理化学学报, 2014, 30(1):171-182.(LI B K, CONG Y, TIAN Z Y, et al. Predicting and virtually screening the selective inhibitors of MMP-13 over MMP-1 by molecular descriptors and machine learning methods[J]. Acta Physico-Chimica Sinica, 2014, 30(1):171-182.) [4] LIN Y F, ZHANG Z R, MAHJOUR B, et al. Reinforcing the supply chain of COVID-19 therapeutics with expert-coded retrosynthetic software[EB/OL].[2021-01-10]. https://doi.org/10.26434/chemrxiv.12765410.v1. [5] 梁礼, 邓成龙, 张艳敏, 等. 人工智能在药物发现中的应用与挑战[J]. 药学进展, 2020, 44(1):18-27.(LIANG L, DENG C L, ZHANG Y M, et al. Application and challenges of artificial intelligence in drug discovery[J]. Progress in Pharmaceutical Sciences, 2020, 44(1):18-27.) [6] DIMASI J. Research and development costs of new drugs[J]. The Journal of the American Medical Association, 2020, 324(5):No. 517. [7] STOKES J M, YANG K, SWANSON K, et al. A deep learning approach to antibiotic discovery[J]. Cell, 2020, 180(4):688-702. [8] DAI H J, LI C T, COLEY C W, et al. Retrosynthesis prediction with conditional graph logic network[EB/OL].[2021-01-10]. https://arxiv.org/pdf/2001.01408.pdf. [9] SALATIN T D, JORGENSEN W L. Computer-assisted mechanistic evaluation of organic reactions. 1. overview[J]. The Journal of Organic Chemistry, 1980, 45(11):2043-2051. [10] GASTEIGER J, HUTCHINGS M G, CHRISTOPH B, et al. A New Treatment of Chemical Reactivity:Development of EROS, an Expert System for Reaction Prediction and Synthesis Design[M]. Berlin:Springer, 1987:19-73. [11] UGI I, BAUER J, BLEY K, et al. ChemInform abstract:computer supported chemical calculating, thinking, and inventing[J]. ChemInform, 1992, 23(38):170-178. [12] SATOH H, FUNATSU K. SOPHIA, a knowledge base-guided reaction prediction system-utilization of a knowledge base derived from a reaction database[J]. Journal of Chemical Information and Computer Sciences, 1995, 35(1):34-44. [13] SOCORRO I M, TAYLOR K, GOODMAN J M. ROBIA:a reaction prediction program[J]. Organic Letters, 2005, 7(16):3541-3544. [14] COLEY C W, BARZILAY R, JAAKKOLA T S, et al. Prediction of organic reaction outcomes using machine learning[J]. ACS Central Science, 2017, 3(5):434-443. [15] GOH G B, HODAS N, SIEGEL C, et al. SMILES2Vec:an interpretable general-purpose deep neural network for predicting chemical properties[EB/OL].[2020-05-20]. https://arxiv.org/pdf/1712.02034.pdf. [16] SCHWALLER P, GAUDIN T, LÁNYI D, et al. "Found in Translation":predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models[J]. Chemical Science, 2018, 9(28):6091-6098. [17] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].[2021-01-10]. https://arxiv.org/pdf/1609.02907.pdf [18] COLEY C W, JIN W G, ROGERS L, et al. A graph-convolutional neural network model for the prediction of chemical reactivity[J]. Chemical Science, 2019, 10(2):370-377. [19] LOWE D. Patent reaction extraction[P/OL].[2018-05-20]. https://doi.org/10.17863/CAM.16293. |
[1] | . YOLOv5s-MRD: an efficient fire and smoke detection algorithm for complex scenarios based on YOLOv5s [J]. Journal of Computer Applications, 0, (): 0-0. |
[2] | Qiye ZHANG, Xinrui ZENG. Efficient active-set method for support vector data description problem with Gaussian kernel [J]. Journal of Computer Applications, 2024, 44(12): 3808-3814. |
[3] | Yawei HUANG, Xuezhong QIAN, Wei SONG. Improved differential evolution algorithm based on dual-archive population size adaptive method [J]. Journal of Computer Applications, 2024, 44(12): 3844-3853. |
[4] | Hongru JIANG, Wei FANG. Survey of application of deep learning in meteorological data correction [J]. Journal of Computer Applications, 2024, 44(12): 3930-3940. |
[5] | . Improvement method of heuristic vehicle routing algorithm based on constrained spectral clustering [J]. Journal of Computer Applications, 0, (): 0-0. |
[6] | . Path planning of multi-UAV formation based on improved artificial potential field method [J]. Journal of Computer Applications, 0, (): 0-0. |
[7] | . Dual-population dual-stage evolutionary algorithm for complex constrained multi-objective optimization problems [J]. Journal of Computer Applications, 0, (): 0-0. |
[8] | Qin LENG, Zhengyuan MAO. Two echelon location-routing optimization considering facility sizing decision [J]. Journal of Computer Applications, 2024, 44(11): 3513-3520. |
[9] | Qingyuan PENG, Xiaofeng WANG, Junxia WANG, Yingying HUA, Ao TANG, Fei HE. Review of phase transition in satisfiability problems [J]. Journal of Computer Applications, 2024, 44(11): 3503-3512. |
[10] | Jie HUANG, Ruizi WU, Junli LI. Efficient adaptive robustness optimization algorithm for complex networks [J]. Journal of Computer Applications, 2024, 44(11): 3530-3539. |
[11] | Renke SUN, Zhiyu HUANGFU, Hu CHEN, Zhongnian LI, Xinzheng XU. Survey of neural architecture search [J]. Journal of Computer Applications, 2024, 44(10): 2983-2994. |
[12] | Antai SUN, Ye LIU, Dongmei XU. Dynamic surface asymptotic compensation algorithm for multi-agent systems [J]. Journal of Computer Applications, 2024, 44(10): 3151-3157. |
[13] | Chaoying YAN, Ziyi ZHANG, Yingnan QU, Qiuyu LI, Dixiang ZHENG, Lijun SUN. Double auction carbon trading based on consortium blockchain [J]. Journal of Computer Applications, 2024, 44(10): 3240-3245. |
[14] | . Dung beetle optimizer algorithm with restricted reverse learning and Cauchy-Gauss variation [J]. Journal of Computer Applications, 0, (): 0-0. |
[15] | Guanglei YAO, Juxia XIONG, Guowu YANG. Flower pollination algorithm based on neural network optimization [J]. Journal of Computer Applications, 2024, 44(9): 2829-2837. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||