[1] WANG C,LUO H,ZHAO F,et al. Combining residual and LSTM recurrent networks for transportation mode detection using multimodal sensors integrated in smartphones[J]. IEEE Transactions on Intelligent Transportation Systems,2020(Early Access):1-13. [2] QIN Y,LUO H,ZHAO F,et al. Toward transportation mode recognition using deep convolutional and long short-term memory recurrent neural networks[J]. IEEE Access,2019,7:142353-142367. [3] WIDHALM P, NITSCHE P, BRÄNDIE N. Transport mode detection with realistic smartphone sensor data[C]//Proceedings of the 21st International Conference on Pattern Recognition. Piscataway:IEEE,2012:573-576. [4] ZHENG Y,LIU L,WANG L,et al. Learning transportation mode from raw GPS data for geographic application on the web[C]//Proceedings of the 2008 17th International Conference on World Wide Web. New York:ACM,2008:247-256. [5] ENDO Y,TODA H,NISHIDA K,et al. Deep feature extraction from trajectories for transportation mode estimation[C]//Proceedings of the 2016 Pacific-Asia Conference on Knowledge Discovery and Data Mining,LNCS 9652. Cham:Springer,2016:54-66. [6] JIANG X, DE SOUZA E N, PESARANGHADER A, et al. TrajectoryNet:an embedded GPS trajectory representation for pointbased classification using recurrent neural networks[C]//Proceedings of the 2017 27th Annual International Conference on Computer Science and Software Engineering. Armonk:IBM,2017:192-200. [7] GRAVES A,JAITLY N. Towards end-to-end speech recognition with recurrent neural networks[C]//Proceedings of the 31st International Conference on Machine Learning Research. New York:JMLR. org,2014:1764-1772. [8] STENNETH L,WOLFSON O,YU P S,et al. Transportation mode detection using mobile phones and GIS information[C]//Proceedings of the 2011 19th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems. New York:ACM,2011:54-63. [9] BEDOGNI L,DI FELICE M,BONONI L. By train or by car? Detecting the user's motion type through smartphone sensors data[C]//Proceedings of the 2012 IFIP Wireless Days. Piscataway:IEEE,2012:1-6. [10] JAHANGIRI A, RAKHA H A. Applying machine learning techniques to transportation mode recognition using mobile phone sensor data[J]. IEEE Transactions on Intelligent Transportation Systems,2015,16(5):2406-2417. [11] FANG S H,FEI Y X,XU Z,et al. Learning transportation modes from smartphone sensors based on deep neural network[J]. IEEE Sensors Journal,2017,17(18):6111-6118. [12] 王璞, 刘洋, 黄智仁. 一种轻量级梯度提升机的交通模式识别[J]. 哈尔滨工业大学学报, 2019, 51(9):96-102.(WANG P, LIU Y,HUANG Z R. Transportation modes recognition using a light gradient boosting machine[J]. Journal of Harbin Institute of Technology,2019,51(9):96-102.) [13] 王昊, 刘高军, 段建勇, 等. 基于特征自学习的交通模式识别研究[J]. 哈尔滨工程大学学报, 2019, 40(2):354-358.(WANG H,LIU G J,DUAN J Y,et al. Transportation mode detection based on self-learning of features[J]. Journal of Harbin Engineering University,2019,40(2):354-358.) [14] 熊苏生. 基于改进LightGBM的交通模式识别算法[J]. 计算机与现代化, 2018(10):68-73,126.(XIONG S S. Identifying transportation mode based on improved LightGBM algorithm[J]. Computer and Modernization,2018(10):68-73,126.) [15] YANG J B,NGUYEN M N,SAN P P,et al. Deep convolutional neural networks on multichannel time series for human activity recognition[C]//Proceedings of the 2015 24th International Joint Conference on Artificial Intelligence. Palo Alto:AAAI Press, 2015:3995-4001. [16] ZHOU P,SHI W,TIAN J,et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 2016 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg:ACL, 2016:207-212. [17] XIAO Z, WANG Y, FU K, et al. Identifying different transportation modes from trajectory data using tree-based ensemble classifiers[J]. ISPRS International Journal of GeoInformation,2017,6(2):Article No. 57. [18] FENG T, TIMMERMANS H J P. Comparison of advanced imputation algorithms for detection of transportation mode and activity episode using GPS data[J]. Transportation Planning and Technology,2016,39(2):180-194. [19] IGNATOV A. Real-time human activity recognition from accelerometer data using convolutional neural networks[J]. Applied Soft Computing,2018,62:915-922. [20] LIU H, LEE I. End-to-end trajectory transportation mode classification using Bi-LSTM recurrent neural network[C]//Proceedings of the 2017 12th International Conference on Intelligent Systems and Knowledge Engineering. Piscataway:IEEE,2017:1-5. [21] HANNUN A,CASE C,CASPER J,et al. DeepSpeech:scaling up end-to-end speech recognition[EB/OL].[2020-04-26]. https://arxiv.org/pdf/1412.5567v1.pdf. [22] BOHTE W,MAAT K. Deriving and validating trip purposes and travel modes for multi-day GPS-based travel surveys:a large-scale application in the Netherlands[J]. Transportation Research Part C:Emerging Technologies,2009,17(3):285-297. [23] FRIEDRICH B,LÜBBE C,HEIN A. Combining LSTM and CNN for mode of transportation classification from smartphone sensors[C]//Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing adn Proceedings of the 2020 ACM International Symposium on Wearable Computers. New York:ACM,2020:305-310. |