Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (9): 2893-2899.DOI: 10.11772/j.issn.1001-9081.2021071286
• Multimedia computing and computer simulation • Previous Articles Next Articles
Yi ZHANG(), Yongrong SUN, Kedong ZHAO, Hua LI, Qinghua ZENG
Received:
2021-07-16
Revised:
2021-09-07
Accepted:
2021-09-14
Online:
2021-09-27
Published:
2022-09-10
Contact:
Yi ZHANG
About author:
SUN Yongrong, born in 1969, Ph. D., professor. His research interests include inertial navigation and integrated navigation, visual navigation, avionics system and control.通讯作者:
张怡
作者简介:
孙永荣(1969—),男,江苏海安人,教授,博士,主要研究方向:惯性导航与组合导航、视觉导航、航空电子系统及控制;CLC Number:
Yi ZHANG, Yongrong SUN, Kedong ZHAO, Hua LI, Qinghua ZENG. Joint detection and tracking algorithm of target in aerial refueling scenes[J]. Journal of Computer Applications, 2022, 42(9): 2893-2899.
张怡, 孙永荣, 赵科东, 李华, 曾庆化. 空中加油场景下的目标联合检测跟踪算法[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2893-2899.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021071286
指标 | 具体说明 |
---|---|
Rcll | 召回率(Recall) |
Prcn | 精确率(Precision) |
MOTA | 跟踪的准确度(Multi-Object Tracking Accuracy) |
IDF1 | 识别精度和识别召回率的调和平均(ID F1 score) |
MT | 命中的轨迹占总轨迹的占比(Mostly Tracked targets),一般选取80%作为基准值 |
ML | 丢失的轨迹占总轨迹的占比(Mostly Lost targets),一般选取20%作为基准值 |
FP | 误检的总数量(False Positives) |
FN | 漏检的总数量(False Negatives) |
IDs | ID改变的总数量(IDentity Switches) |
Tab.1 Part of evaluation indicators on MOT17 dataset
指标 | 具体说明 |
---|---|
Rcll | 召回率(Recall) |
Prcn | 精确率(Precision) |
MOTA | 跟踪的准确度(Multi-Object Tracking Accuracy) |
IDF1 | 识别精度和识别召回率的调和平均(ID F1 score) |
MT | 命中的轨迹占总轨迹的占比(Mostly Tracked targets),一般选取80%作为基准值 |
ML | 丢失的轨迹占总轨迹的占比(Mostly Lost targets),一般选取20%作为基准值 |
FP | 误检的总数量(False Positives) |
FN | 漏检的总数量(False Negatives) |
IDs | ID改变的总数量(IDentity Switches) |
网络 | Rcll/% | Prcn/% | MOTA/% | IDF1/% | MT/% | ML/% | FP | FN | IDs |
---|---|---|---|---|---|---|---|---|---|
CenterTrack | 71.60 | 94.10 | 66.10 | 64.20 | 41.30 | 21.20 | 2 442 | 15 286 | 528 |
Tiny-CenterTrack | 71.60 | 92.50 | 64.40 | 66.40 | 37.80 | 16.20 | 3 105 | 15 326 | 748 |
Tab.2 Comparison of evaluation results on MOT17-FRCNN dataset
网络 | Rcll/% | Prcn/% | MOTA/% | IDF1/% | MT/% | ML/% | FP | FN | IDs |
---|---|---|---|---|---|---|---|---|---|
CenterTrack | 71.60 | 94.10 | 66.10 | 64.20 | 41.30 | 21.20 | 2 442 | 15 286 | 528 |
Tiny-CenterTrack | 71.60 | 92.50 | 64.40 | 66.40 | 37.80 | 16.20 | 3 105 | 15 326 | 748 |
网络 | MOTA/% | IDF1/% | MT/% | ML/% | IDs |
---|---|---|---|---|---|
CenterTrack | 61.50 | 59.60 | 26.40 | 31.90 | 2 583 |
Tracktor v2 | 56.50 | 55.10 | 21.10 | 35.30 | 3 763 |
FFT | 56.50 | 51.00 | 26.20 | 26.70 | 5 672 |
MPNTrack | 55.70 | 59.10 | 27.20 | 34.40 | 1 433 |
LSST17 | 54.70 | 62.30 | 20.40 | 40.10 | 1 243 |
Tracktor | 53.50 | 52.30 | 19.50 | 36.60 | 2 072 |
MOTDT | 50.90 | 52.70 | 17.50 | 35.70 | 2 474 |
Tiny-CenterTrack(public) | 62.30 | 64.80 | 33.20 | 22.10 | 1 545 |
CenterTrack(private) | 67.80 | 64.70 | 34.60 | 24.60 | 3 039 |
Tiny-CenterTrack(private) | 64.20 | 66.70 | 33.60 | 20.10 | 1 938 |
Tab.3 Comparison of evaluation results on MOT17 dataset
网络 | MOTA/% | IDF1/% | MT/% | ML/% | IDs |
---|---|---|---|---|---|
CenterTrack | 61.50 | 59.60 | 26.40 | 31.90 | 2 583 |
Tracktor v2 | 56.50 | 55.10 | 21.10 | 35.30 | 3 763 |
FFT | 56.50 | 51.00 | 26.20 | 26.70 | 5 672 |
MPNTrack | 55.70 | 59.10 | 27.20 | 34.40 | 1 433 |
LSST17 | 54.70 | 62.30 | 20.40 | 40.10 | 1 243 |
Tracktor | 53.50 | 52.30 | 19.50 | 36.60 | 2 072 |
MOTDT | 50.90 | 52.70 | 17.50 | 35.70 | 2 474 |
Tiny-CenterTrack(public) | 62.30 | 64.80 | 33.20 | 22.10 | 1 545 |
CenterTrack(private) | 67.80 | 64.70 | 34.60 | 24.60 | 3 039 |
Tiny-CenterTrack(private) | 64.20 | 66.70 | 33.60 | 20.10 | 1 938 |
1 | THOMAS P R, BHANDARI U, BULLOCK S, et al. Advances in air to air refuelling[J]. Progress in Aerospace Sciences, 2014, 71: 14-35. 10.1016/j.paerosci.2014.07.001 |
2 | 全权,魏子博,高俊,等. 软管式自主空中加油对接阶段中的建模与控制综述[J]. 航空学报, 2014, 35(9): 2390-2410. |
QUAN Q, WEI Z B, GAO J, et al. A survey on modeling and control problems for probe and drogue autonomous aerial refueling at docking stage[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2390-2410. | |
3 | 黄斌,孙永荣,杨博文,等. 迭代最小二乘椭圆拟合的锥套图像检测与跟踪[J]. 中国图象图形学报, 2014, 19(8): 1202-1209. 10.11834/jig.20140812 |
HUANG B, SUN Y R, YANG B W, et al. Drogue image detecting and tracking based on iterative least squares ellipse fitting[J]. Journal of Image and Graphics, 2014, 19(8): 1202-1209. 10.11834/jig.20140812 | |
4 | BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking[C]// Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 3464-3468. 10.1109/icip.2016.7533003 |
5 | XU J R, CAO Y, ZHANG Z, et al. Spatial-temporal relation networks for multi-object tracking[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3987-3997. 10.1109/iccv.2019.00409 |
6 | ZHOU X Y, KOLTUN V, KRÄHENBÜHL P. Tracking objects as points[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12349. Cham: Springer, 2020: 474-490. |
7 | 王品学,张绍兵,成苗,等. 基于可变形卷积和自适应空间特征融合的硬币表面缺陷检测算法[J]. 计算机应用, 2022, 42(2): 638-645. |
WANG P X, ZHANG S B, CHENG M, et al. Coin surface defect detection algorithm based on deformable convolution and adaptive spatial feature fusion[J]. Journal of Computer Applications, 2022, 42(2): 638-645. | |
8 | 余文勇,张阳,姚海明,等. 基于轻量化重构网络的表面缺陷视觉检测[J/OL]. 自动化学报 (2020-11-16)[2021-07-15]. . |
YU W Y, ZHANG Y, YAO H M, et al. Visual inspection of surface defects based on lightweight reconstruction network[J/OL]. Acta Automatica Sinica (2020-11-16)[2021-07-15]. . | |
9 | 梁峰,董名,田志超,等. 面向轻量化神经网络的模型压缩与结构搜索[J]. 西安交通大学学报, 2020, 54(11): 106-112. 10.7652/xjtuxb202011013 |
LIANG F, DONG M, TIAN Z C, et al. Model compression and structure search for lightweight neural network[J]. Journal of Xi’an Jiaotong University, 2020, 54(11): 106- 112. 10.7652/xjtuxb202011013 | |
10 | WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 1451-1460. 10.1109/wacv.2018.00163 |
11 | 张全龙,王怀彬. 基于膨胀卷积和门控循环单元组合的入侵检测模型[J]. 计算机应用, 2021, 41(5): 1372-1377. |
ZHANG Q L, WANG H B. Intrusion detection model based on combination of dilated convolution and gated recurrent unit[J]. Journal of Computer Applications, 2021, 41(5): 1372-1377. | |
12 | 李海燕,吴自莹,郭磊,等. 基于混合空洞卷积网络的多鉴别器图像修复[J]. 华中科技大学学报(自然科学版), 2021, 49(3): 40-45. |
LI H Y, WU Z Y, GUO L, et al. Multi-discriminator image inpainting algorithm based on hybrid dilated convolution network[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(3): 40-45. | |
13 | 贾鹤鸣,郎春博,姜子超. 基于轻量级卷积神经网络的植物叶片病害识别方法[J]. 计算机应用, 2021, 41(6): 1812-1819. 10.11772/j.issn.1001-9081.2020091471 |
JIA H M, LANG C B, JIANG Z C. Plant leaf disease recognition method based on lightweight convolutional neural network[J]. Journal of Computer Applications, 2021, 41(6): 1812-1819. 10.11772/j.issn.1001-9081.2020091471 | |
14 | 史加荣,王丹,尚凡华,等. 随机梯度下降算法研究进展[J]. 自动化学报, 2021, 47(9): 2103-2119. |
SHI J R, WANG D, SHANG F H, et al. Research advances on stochastic gradient descent algorithms[J]. Acta Automatica Sinica, 2021, 47(9): 2103-2119. | |
15 | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2021-03-08].. |
16 | 刘然,刘宇,顾进广. 基于自适应学习率优化的AdaNet改进[J]. 计算机应用, 2020, 40(10): 2804-2810. |
LIU R, LIU Y, GU J G. Improved AdaNet based on adaptive learning rate optimization[J]. Journal of Computer Applications, 2020, 40(10): 2804-2810. | |
17 | KESKAR N S, SOCHER R. Improving generalization performance by switching from Adam to SGD[EB/OL]. (2017-12-20) [2021-03-08].. |
18 | WILSON A C, ROELOFS R, STERN M, et al. The marginal value of adaptive gradient methods in machine learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 4151-4161. |
[1] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[2] | Jun FENG, Jiankang BI, Yiru HUO, Jiakuan LI. PIPNet: lightweight asphalt pavement crack image segmentation network [J]. Journal of Computer Applications, 2024, 44(5): 1520-1526. |
[3] | Xinyuan YOU, Heng WANG. Monaural speech enhancement based on gated dilated convolutional recurrent network [J]. Journal of Computer Applications, 2024, 44(4): 1317-1324. |
[4] | Lin WANG, Jingliang LIU, Wuwei WANG. Small target detection method in UAV images based on fusion of dilated convolution and Transformer [J]. Journal of Computer Applications, 2024, 44(11): 3595-3602. |
[5] | Yu ZENG, Yang ZHANG, Shang ZENG, Maoli FU, Qixue HE, Linlong ZENG. Time series prediction algorithm based on multi-scale gated dilated convolutional network [J]. Journal of Computer Applications, 2024, 44(11): 3427-3434. |
[6] | Meijia LIANG, Xinwu LIU, Xiaopeng HU. Small target detection algorithm for train operating environment image based on improved YOLOv3 [J]. Journal of Computer Applications, 2023, 43(8): 2611-2618. |
[7] | Junjian JIANG, Dawei LIU, Yifan LIU, Yougui REN, Zhibin ZHAO. Few-shot object detection algorithm based on Siamese network [J]. Journal of Computer Applications, 2023, 43(8): 2325-2329. |
[8] | Chunlan ZHAN, Anzhi WANG, Minghui WANG. Camouflage object segmentation method based on channel attention and edge fusion [J]. Journal of Computer Applications, 2023, 43(7): 2166-2172. |
[9] | Yiyu GUO, Luoyu ZHOU, Xinyu LIU, Yao LI. Dangerous goods detection method in elevator scene based on improved attention mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2295-2302. |
[10] | Hui LIU, Linyu ZHANG, Fugang WANG, Rujin HE. Object detection algorithm based on attention mechanism and context information [J]. Journal of Computer Applications, 2023, 43(5): 1557-1564. |
[11] | Ruilin JIANG, Renchao QIN. Multi-neural network malicious code detection model based on depthwise separable convolution [J]. Journal of Computer Applications, 2023, 43(5): 1527-1533. |
[12] | Jiadong LI, Danpu ZHANG, Yaqiong FAN, Jianfeng YANG. Lightweight ship target detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2023, 43(3): 923-929. |
[13] | You YANG, Ruhui ZHANG, Pengcheng XU, Kang KANG, Hao ZHAI. Improved U-Net for seal segmentation of Republican archives [J]. Journal of Computer Applications, 2023, 43(3): 943-948. |
[14] | Kun LI, Qing HOU. Lightweight human pose estimation based on attention mechanism [J]. Journal of Computer Applications, 2022, 42(8): 2407-2414. |
[15] | Juan WANG, Xuliang YUAN, Minghu WU, Liquan GUO, Zishan LIU. Real-time semantic segmentation method based on squeezing and refining network [J]. Journal of Computer Applications, 2022, 42(7): 1993-2000. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||