Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (11): 3394-3401.DOI: 10.11772/j.issn.1001-9081.2020121963
• Frontier and comprehensive applications • Previous Articles Next Articles
Jin ZHAO1, Wen’ai SONG1, Jun TAI2(), Jijiang YANG3, Qing WANG3, Xiaodan LI4, Yi LEI3, Yue QIU4
Received:
2020-12-14
Revised:
2021-06-02
Accepted:
2021-06-29
Online:
2021-03-05
Published:
2021-11-10
Contact:
Jun TAI
About author:
ZHAO Jin,born in 1995,M. S. candidate. His research interests
include software engineering,digital medicineSupported by:
赵津1, 宋文爱1, 邰隽2(), 杨吉江3, 王青3, 李晓丹4, 雷毅3, 邱悦4
通讯作者:
邰隽
作者简介:
赵津(1995—),男,山西阳泉人,硕士研究生,主要研究方向:软件工程、数字医疗基金资助:
CLC Number:
Jin ZHAO, Wen’ai SONG, Jun TAI, Jijiang YANG, Qing WANG, Xiaodan LI, Yi LEI, Yue QIU. Review of computer-aided face diagnosis for obstructive sleep apnea in children[J]. Journal of Computer Applications, 2021, 41(11): 3394-3401.
赵津, 宋文爱, 邰隽, 杨吉江, 王青, 李晓丹, 雷毅, 邱悦. 儿童阻塞性睡眠呼吸暂停计算机人脸辅助诊断综述[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3394-3401.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2020121963
方法 | 优点 | 缺点 |
---|---|---|
基于特征的方法 | 简单,易于实现,对于光照、姿态的鲁棒性较高 | 某些特征由相关人员观察得出,局限性较大 |
基于AdaBoost方法 | 速度快,准确率较高 | 容易过拟合,Haar特征稳定性低 |
基于图像的方法 | 准确率高 | 需要更多的数据库,而且对于遮挡和光照的鲁棒性不高,容易受噪声影响 |
Tab. 1 Comparison of advantages and disadvantages of face detection methods
方法 | 优点 | 缺点 |
---|---|---|
基于特征的方法 | 简单,易于实现,对于光照、姿态的鲁棒性较高 | 某些特征由相关人员观察得出,局限性较大 |
基于AdaBoost方法 | 速度快,准确率较高 | 容易过拟合,Haar特征稳定性低 |
基于图像的方法 | 准确率高 | 需要更多的数据库,而且对于遮挡和光照的鲁棒性不高,容易受噪声影响 |
方法 | 优点 | 缺点 |
---|---|---|
基于ASM传统方法 | 模型简单,易于理解,基本满足要求 | 运算效率低 |
基于级联回归方法 | 模型简单,实用性强,适合大规模数据 | 对于姿态较大的人脸效果很差 |
基于深度学习的方法 | 对于姿势变化较大和有遮挡的人脸识别精度也很高 | 普遍存在算法复杂,模型复杂度太高 |
Tab. 2 Comparison of advantages and disadvantages of face keypoint detection methods
方法 | 优点 | 缺点 |
---|---|---|
基于ASM传统方法 | 模型简单,易于理解,基本满足要求 | 运算效率低 |
基于级联回归方法 | 模型简单,实用性强,适合大规模数据 | 对于姿态较大的人脸效果很差 |
基于深度学习的方法 | 对于姿势变化较大和有遮挡的人脸识别精度也很高 | 普遍存在算法复杂,模型复杂度太高 |
方法 | 优点 | 缺点 | 改进方法 |
---|---|---|---|
基于欧氏距离的几何特征提取 | 方便实用 | 从3D投影到2D时,脸上的 关键点实际距离差别很大 | 用2D人脸坐标进行3D人脸重构等 |
基于Gabor小波变换的纹理特征提取 | 简单实用,可以提取到 空间局部的低频特征 | 提取到的特征信息不全面, 维度高,数据庞大 | 降维PCA;二维Gabor小波与AR-LGC 相结合的人脸特征提取等 |
基于颜色直方图的颜色特征提取 | 反映了图像中颜色的分布, 可以比较图像间的颜色差 | 丢失了像素点间的位置特征 | 颜色集等 |
基于神经网络的深度特征提取 | 准确度高 | 结构复杂,需要大规模的 数据库进行训练 | 不断改进模型的参数和优化方法, 建立更多姿态的2D人脸数据库等 |
Tab. 3 Comparison of advantages and disadvantages of face feature extraction methods
方法 | 优点 | 缺点 | 改进方法 |
---|---|---|---|
基于欧氏距离的几何特征提取 | 方便实用 | 从3D投影到2D时,脸上的 关键点实际距离差别很大 | 用2D人脸坐标进行3D人脸重构等 |
基于Gabor小波变换的纹理特征提取 | 简单实用,可以提取到 空间局部的低频特征 | 提取到的特征信息不全面, 维度高,数据庞大 | 降维PCA;二维Gabor小波与AR-LGC 相结合的人脸特征提取等 |
基于颜色直方图的颜色特征提取 | 反映了图像中颜色的分布, 可以比较图像间的颜色差 | 丢失了像素点间的位置特征 | 颜色集等 |
基于神经网络的深度特征提取 | 准确度高 | 结构复杂,需要大规模的 数据库进行训练 | 不断改进模型的参数和优化方法, 建立更多姿态的2D人脸数据库等 |
方案 | 源域数据集 | 网络模型 |
---|---|---|
文献[ | ImageNet | OverFeat |
文献[ | ImageNet | VGGNet-16 |
文献[ | ImageNet | GoogleNet Inception v3 |
文献[ | ImageNet | VGGNet-16和ResNet-50 |
文献[ | CASIA Web-Face | 深格塔式的深卷积神经网络结构 |
文献[ | CASIA Web-Face | 10个卷积层的DCNN,并把大内核分解为多个较小内核的多层网络 |
文献[ | VGG-Face | 5个卷积层的DCNN |
Tab. 4 Transfer learning network models used in medical field and corresponding source domain data sets
方案 | 源域数据集 | 网络模型 |
---|---|---|
文献[ | ImageNet | OverFeat |
文献[ | ImageNet | VGGNet-16 |
文献[ | ImageNet | GoogleNet Inception v3 |
文献[ | ImageNet | VGGNet-16和ResNet-50 |
文献[ | CASIA Web-Face | 深格塔式的深卷积神经网络结构 |
文献[ | CASIA Web-Face | 10个卷积层的DCNN,并把大内核分解为多个较小内核的多层网络 |
文献[ | VGG-Face | 5个卷积层的DCNN |
3D人脸模型 | 方法 | 特点 |
---|---|---|
CT | 用X射线生成人体横截面 | 包含有关软组织和硬组织的3D信息,费用昂贵,病人暴露在辐射下 |
深度图 | 将3D面的 | 扫描速度快,精确度较高,但不适用于3D视频录制 |
点云 | 测量光图案的变形以计算表面形状 | 扫描速度更快,但精确度与深度图相比有所下降 |
网格 | 匹配不同摄像机采集到的点,并计算三维位置 | 包含的三维信息更多,模型更精确,但需要大量的内存 |
3dMD系统 | 六对同步摄像头组成,用三角剖分合并图像 | 无辐射影响,精确度高 |
Tab. 5 Characteristics comparison of common 3D face data acquisition methods
3D人脸模型 | 方法 | 特点 |
---|---|---|
CT | 用X射线生成人体横截面 | 包含有关软组织和硬组织的3D信息,费用昂贵,病人暴露在辐射下 |
深度图 | 将3D面的 | 扫描速度快,精确度较高,但不适用于3D视频录制 |
点云 | 测量光图案的变形以计算表面形状 | 扫描速度更快,但精确度与深度图相比有所下降 |
网格 | 匹配不同摄像机采集到的点,并计算三维位置 | 包含的三维信息更多,模型更精确,但需要大量的内存 |
3dMD系统 | 六对同步摄像头组成,用三角剖分合并图像 | 无辐射影响,精确度高 |
方案 | 方法 | 特点 |
---|---|---|
文献[ | 使用线性距离和角度 | 简单实用,易于测量和比较,但在形状分析上会有很多困难 |
文献[ | 持久同源性 | 持久同源性结合了几何的区分能力和拓扑的分类能力 |
文献[ | GMM | 对整体形状进行分析,还可以减少误差 |
文献[ | 使用神经网络自动提取 深度表型特征 | 神经网络可以学到更深层次的深度表型特征,理论上可以更好地进行分类, 但是需要庞大的数据库、参数、优化方法 |
Tab. 6 Characteristics comparison of 3D face data feature extraction methods
方案 | 方法 | 特点 |
---|---|---|
文献[ | 使用线性距离和角度 | 简单实用,易于测量和比较,但在形状分析上会有很多困难 |
文献[ | 持久同源性 | 持久同源性结合了几何的区分能力和拓扑的分类能力 |
文献[ | GMM | 对整体形状进行分析,还可以减少误差 |
文献[ | 使用神经网络自动提取 深度表型特征 | 神经网络可以学到更深层次的深度表型特征,理论上可以更好地进行分类, 但是需要庞大的数据库、参数、优化方法 |
1 | GUILLEMINAULT C, ELDRIDGE F L, SIMMONS F B, et al. Sleep apnea in eight children [J]. Pediatrics, 1976, 58(1): 23-30. 10.1146/annurev.me.27.020176.002341 |
2 | FARBER J M. Clinical practice guideline: diagnosis and management of childhood obstructive sleep apnea syndrome [J]. Pediatrics, 2002, 110(6): 1255-1257. 10.1542/peds.110.6.1255-a |
3 | MARCUS C L, BROOKS L J, DRAPER K A, et al. Diagnosis and management of childhood obstructive sleep apnea syndrome [J]. Pediatrics, 2012, 130(3): 576-584. 10.1542/peds.2012-1671 |
4 | GUILLEMINAULT C, HUANG Y S, GLAMANN C, et al. Adenotonsillectomy and obstructive sleep apnea in children: a prospective survey [J]. Otolaryngology-Head and Neck Surgery, 2007, 136(2): 169-175. 10.1016/j.otohns.2006.09.021 |
5 | MARCUS C L, OMLIN K J, BASINKI D J, et al. Normal polysomnographic values for children and adolescents [J]. American Review of Respiratory Disease, 1992, 146(5Pt1): 1235-1239. 10.1164/ajrccm/146.5_pt_1.1235 |
6 | 倪鑫.中国儿童阻塞性睡眠呼吸暂停诊断与治疗指南(2020)[J].中国循证医学杂志,2020,20(8):883-900. |
NI X. Chinese guideline for the diagnosis and treatment of childhood obstructive sleep apnea (2020) [J]. Chinese Journal of Evidence-Based Medicine, 2020, 20(8): 883-900. | |
7 | HU X, ZHANG Q Y, YANG J J, et al. Photographic analysis and machine learning for diagnostic prediction of adenoid hypertrophy [C]// Proceedings of the 2019 IEEE 16th International Conference on Networking, Sensing and Control. Piscataway: IEEE, 2019: 7-11. 10.1109/icnsc.2019.8743276 |
8 | KOCA C F, ERDEM T, BAYINDIR T. The effect of adenoid hypertrophy on maxillofacial development: an objective photographic analysis [J]. Journal of Otolaryngology-Head and Neck Surgery, 2016, 45: Article No.48. 10.1186/s40463-016-0161-3 |
9 | BALAEI A T, SUTHERLAND K, CISTULLI P A, et al. Automatic detection of obstructive sleep apnea using facial images [C]// Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2017: 215-218. 10.1109/isbi.2017.7950504 |
10 | SONG W N, LEI Y, CHEN S, et al. Multiple facial image features-based recognition for the automatic diagnosis of turner syndrome [J]. Computers in Industry, 2018, 100: 85-95. 10.1016/j.compind.2018.03.021 |
11 | SCHNEIDER H J, KOSILEK R P, GÜNTHER M, et al. A novel approach to the detection of acromegaly: accuracy of diagnosis by automatic face classification [J]. The Journal of Clinical Endocrinology and Metabolism, 2011, 96(7): 2074-2080. 10.1210/jc.2011-0237 |
12 | KUMOV V, SAMORODOV A. Recognition of genetic diseases based on combined feature extraction from 2D face images [C]// Proceedings of the 2020 26th Conference of Open Innovations Association. Piscataway: IEEE, 2020: 1-7. 10.23919/fruct48808.2020.9087456 |
13 | KIAEE M, KASHLAK A B, KIM J, et al. Diagnosis of pediatric obstructive sleep apnea via face classification with persistent homology and convolutional neural networks [EB/OL]. (2019-10-26) [2021-04-22]. . |
14 | WU F Y H. 3D facial morphology and risk of sleep disordered breathing in children [D]. Vancouver: University of British Columbia, 2020: 25-35. 10.1007/s11325-020-02096-z |
15 | VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features [C]// Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2001: 511‐518. 10.1109/cvpr.2001.990517 |
16 | ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks [J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503. 10.1109/lsp.2016.2603342 |
17 | QIN B S, LIANG L T, WU J C, et al. Automatic identification of down syndrome using facial images with deep convolutional neural network [J]. Diagnostics, 2020, 10(7): Article No.487. 10.3390/diagnostics10070487 |
18 | 肖阳.人脸检测算法综述[J].电子技术与软件工程,2014(4):113-116. |
XIAO Y. A survey of face detection algorithms [J]. Electronic Technology and Software Engineering, 2014(4): 113-116. | |
19 | 梁雅琪,宋文爱,杨吉江,等.人脸辅助诊断关键技术研究[J].计算机工程与应用,2019,55(15):24-31. 10.3778/j.issn.1002-8331.1903-0154 |
LIANG Y Q, SONG W A, YANG J J, et al. Research on key technologies of facial-assisted diagnosis [J]. Computer Engineering and Applications, 2019, 55(15): 24-31. 10.3778/j.issn.1002-8331.1903-0154 | |
20 | COOTES T F, TAYLOR C J, COOPER D H, et al. Active shape models — their training and application [J]. Computer Vision and Image Understanding, 1995, 61(1): 38-59. 10.1006/cviu.1995.1004 |
21 | EDWARDS G J, COOTES T F, TAYLOR C J. Face recognition using active appearance models [C]// Proceedings of the 1998 European Conference on Computer Vision, LNCS1407. Berlin: Springer, 1998: 581-595. 10.1109/afgr.1998.670965 |
22 | KAZEMI V, SULLIVAN J. One millisecond face alignment with an ensemble of regression trees [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 1867-1874. 10.1109/cvpr.2014.241 |
23 | GUO X J, LI S Y, YU J K, et al. PFLD: a practical facial landmark detector [EB/OL]. (2019-03-03) [2021-04-22]. . |
24 | 严严,陈日伟,王菡子.基于深度学习的人脸分析研究进展[J].厦门大学学报(自然科学版),2017,56(1):13-24. |
YAN Y, CHEN R W, WANG H Z. Recent advances on deep-learning-based face analysis [J]. Journal of Xiamen University (Natural Science), 2017, 56(1): 13-24. | |
25 | GAO S W, TAI J, GE W T, et al. Facial feature as predictor for early-persistence OSAS after adenotonsillectomy in children with moderate to severe OSAS [J]. IT Professional, 2020, 22(4): 35-42. 10.1109/mitp.2020.3001238 |
26 | 武佳丽.腺样体肥大的面部辅助诊断方法研究[D].太原:中北大学,2019:20-26. |
WU J L. Study on facial assistant diagnosis method for adenoid hypertrophy [D]. Taiyuan: North University of China, 2019: 20-26. | |
27 | 倪永婧,孙袆,岳莹,等.基于二维Gabor小波与AR-LGC的人脸特征提取算法研究[J].河北工业科技,2019,36(4):258-262. 10.7535/hbgykj.2019yx04006 |
NI Y J, SUN Y, YUE Y, et al. Face feature extraction algorithm based on two-dimensional Gabor wavelet and AR-LGC [J]. Hebei Journal of Industrial Science and Technology, 2019, 36(4): 258-262. 10.7535/hbgykj.2019yx04006 | |
28 | CHEN Y H, LIU W J, ZHANG L, et al. Hybrid facial image feature extraction and recognition for non-invasive chronic fatigue syndrome diagnosis [J]. Computers in Biology and Medicine, 2015, 64: 30-39. 10.1016/j.compbiomed.2015.06.005 |
29 | LIN S, LI Z G, FU B W, et al. Feasibility of using deep learning to detect coronary artery disease based on facial photo [J]. European Heart Journal, 2020, 41(46): 4400-4411. 10.1093/eurheartj/ehaa640 |
30 | KONG X Y, GONG S, SU L J, et al. Automatic detection of acromegaly from facial photographs using machine learning methods [J]. EBioMedicine, 2018, 27: 94-102. 10.1016/j.ebiom.2017.12.015 |
31 | PARKHI O M, VEDALDI A, ZISSERMAN A. Deep face recognition [C]// Proceedings of the 2015 British Machine Vision Conference. Durham: BMVA Press, 2015: Article No.41. 10.5244/c.29.41 |
32 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database [C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. 10.1109/cvpr.2009.5206848 |
33 | GINNEKEN B VAN, SETIO A A A, JACOBS C, et al. Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans [C]// Proceedings of the 2015 IEEE 12th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2015: 286-289. 10.1109/isbi.2015.7163869 |
34 | SHI Z H, HAO H, ZHAO M H, et al. A deep CNN based transfer learning method for false positive reduction [J]. Multimedia Tools and Applications, 2019, 78(1): 1017-1033. 10.1007/s11042-018-6082-6 |
35 | ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks [J]. Nature, 2017, 542(7639): 115-118. 10.1038/nature21056 |
36 | GUROVICH Y, HANANI Y, BAR O, et al. DeepGestalt — identifying rare genetic syndromes using deep learning [EB/OL]. (2018-01-23) [2021-04-22]. . 10.1038/s41591-018-0279-0 |
37 | JIN B, CRUZ L, GONÇALVES N. Deep facial diagnosis: deep transfer learning from face recognition to facial diagnosis [J]. IEEE Access, 2020, 8: 123649-123661. 10.1109/access.2020.3005687 |
38 | LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-444. 10.1038/nature14539 |
39 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90. 10.1145/3065386 |
40 | SERMANET P, EIGEN D, ZHANG X, et al. OverFeat: integrated recognition, localization and detection using convolutional networks [EB/OL]. (2014-02-24) [2021-04-22]. . |
41 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2015-04-10) [2021-04-22]. . 10.5244/c.28.6 |
42 | YU Y H, LIN H F, MENG J N, et al. Deep transfer learning for modality classification of medical images [J]. Information, 2017, 8(3): Article No.91. 10.3390/info8030091 |
43 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
44 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826. 10.1109/cvpr.2016.308 |
45 | YI D, LEI Z, LIAO S C, et al. Learning face representation from scratch [EB/OL]. (2014-11-28) [2021-04-22]. . 10.1109/icpr.2014.75 |
46 | PAN S J, YANG Q. A survey on transfer learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. 10.1109/tkde.2009.191 |
47 | HALLGRÍMSSON B, APONTE J D, KATZ D C, et al. Automated syndrome diagnosis by three-dimensional facial imaging [J]. Genetics in Medicine, 2020, 22(10): 1682-1693. 10.1038/s41436-020-0845-y |
48 | KARATAS O H, TOY E. Three-dimensional imaging techniques: a literature review [J]. European Journal of Dentistry, 2014, 8(1): 132-140. |
49 | 程超,潘家辉,刘大波.三维医学影像分析系统上气道建模在儿童阻塞性睡眠呼吸暂停低通气综合征研究中应用的初探[J].中国耳鼻咽喉头颈外科,2016,23(6):321-324. 10.16066/j.1672-7002.2016.06.004 |
CHEN C, PAN J H, LIU D B. Preliminary study on the application of upper-airway model construction with 3DMA in children with OSAHS [J]. Chinese Archives of Otolaryngology-Head and Neck Surgery, 2016, 23(6): 321-324. 10.16066/j.1672-7002.2016.06.004 | |
50 | ZHOU S, XIAO S. 3D face recognition: a survey [J]. Human-centric Computing and Information Sciences, 2018, 8: Article No.35. 10.1186/s13673-018-0157-2 |
51 | DENG J R, GAO X M. A case-control study of craniofacial features of children with obstructed sleep apnea [J]. Sleep and Breathing, 2012, 16(4): 1219-1227. 10.1007/s11325-011-0636-4 |
52 | DI FRANCESCO R, MONTEIRO R, PAULO M L d M, et al. Craniofacial morphology and sleep apnea in children with obstructed upper airways: differences between genders [J]. Sleep Medicine, 2012, 13(6): 616-620. 10.1016/j.sleep.2011.12.011 |
53 | LIN S W, SUTHERLAND K, LIAO Y F, et al. Three-dimensional photography for the evaluation of facial profiles in obstructive sleep apnoea [J]. Respirology, 2018, 23(6): 618-625. 10.1111/resp.13261 |
54 | COLLINS A, ZOMORODIAN A, CARLSSON G, et al. A barcode shape descriptor for curve point cloud data [J]. Computers and Graphics, 2004, 28(6): 881-894. 10.1016/j.cag.2004.08.015 |
55 | HUANCA GHISLANZONI L, LIONE R, COZZA P, et al. Measuring 3D shape in orthodontics through geometric morphometrics [J]. Progress in Orthodontics, 2017, 18: Article No.38. 10.1186/s40510-017-0194-9 |
[1] | CHEN Zhengtao, HUANG Can, YANG Bo, ZHAO Li, LIAO Yong. Yak face recognition algorithm of parallel convolutional neural network based on transfer learning [J]. Journal of Computer Applications, 2021, 41(5): 1332-1336. |
[2] | WANG Jinkai, JIA Xu. Vein recognition algorithm based on Siamese nonnegative matrix factorization with transferability [J]. Journal of Computer Applications, 2021, 41(3): 898-903. |
[3] | XU Shaowei, QIN Pinle, ZENG Jianchao, ZHAO Zhikai, GAO Yuan. Automatic segmentation algorithm of two-stage mediastinal lymph nodes using attention mechanism [J]. Journal of Computer Applications, 2021, 41(2): 556-562. |
[4] | Xiaolong LIU, Shitong WANG. Open set fuzzy domain adaptation algorithm via progressive separation [J]. Journal of Computer Applications, 2021, 41(11): 3127-3131. |
[5] | Jianfang CAO, Minmin YAN, Yiming JIA, Xiaodong TIAN. Application of Inception-v3 model integrated with transfer learning in dynasty identification of ancient murals [J]. Journal of Computer Applications, 2021, 41(11): 3219-3227. |
[6] | SUN Zhongjie, WAN Tao, CHEN Dong, WANG Hao, ZHAO Yanli, QIN Zengchang. Application of deep learning in histopathological image classification of aortic medial degeneration [J]. Journal of Computer Applications, 2021, 41(1): 280-285. |
[7] | HUANG Xueyu, XU Haote, TAO Jianwen. Multi-source adaptation classification framework with feature selection [J]. Journal of Computer Applications, 2020, 40(9): 2499-2506. |
[8] | ZHANG Chenxi, TANG Shu, TANG Ke. Strategies of parameter fault detection for rocket engines based on transfer learning [J]. Journal of Computer Applications, 2020, 40(9): 2774-2780. |
[9] | BAI Ruyi, GUO Xiaoying, JIA Chunhua. Sentiment prediction of small sample abstract painting image based on feature fusion [J]. Journal of Computer Applications, 2020, 40(8): 2207-2213. |
[10] | MA Jinlin, WEI Meng, MA Ziping. Pulmonary nodule segmentation method based on deep transfer learning [J]. Journal of Computer Applications, 2020, 40(7): 2117-2125. |
[11] | XIAO He, LIU Zhiqin, WANG Qingfeng, HUANG Jun, ZHOU Ying, LIU Qiyu, XU Weiyun. Mass and calcification classification method in mammogram based on multi-view transfer learning [J]. Journal of Computer Applications, 2020, 40(5): 1460-1464. |
[12] | CHEN Guihui, YI Xin, LI Zhongbing, QIAN Jiren, CHEN Wu. Third-party construction target detection in aerial images of pipeline inspection based on improved YOLOv2 and transfer learning [J]. Journal of Computer Applications, 2020, 40(4): 1062-1068. |
[13] | CHEN Jie, ZHANG Ting, DU Yi. Reconstruction of porous media using adaptive deep transfer learning [J]. Journal of Computer Applications, 2020, 40(4): 1231-1236. |
[14] | ZHENG Zongsheng, HU Chenyu, JIANG Xiaoyi. Deep transfer adaptation network based on improved maximum mean discrepancy algorithm [J]. Journal of Computer Applications, 2020, 40(11): 3107-3112. |
[15] | MAO Wentao, YANG Chao, LIU Yamin, TIAN Siyu. Deep domain adaptation model with multi-scale residual attention for incipient fault detection of bearings [J]. Journal of Computer Applications, 2020, 40(10): 2890-2898. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||