Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (11): 3394-3401.DOI: 10.11772/j.issn.1001-9081.2020121963

• Frontier and comprehensive applications • Previous Articles     Next Articles

Review of computer-aided face diagnosis for obstructive sleep apnea in children

Jin ZHAO1, Wen’ai SONG1, Jun TAI2(), Jijiang YANG3, Qing WANG3, Xiaodan LI4, Yi LEI3, Yue QIU4   

  1. 1.School of Software,North University of China,Taiyuan Shanxi 030051,China
    2.Department of Otolaryngology-Head and Neck Surgery,Children’s Hospital Affiliated to Capital Institute of Pediatrics,Beijing 100020,China
    3.Department of Automation,Tsinghua University,Beijing 100084,China
    4.Department of Otolaryngology-Head and Neck Surgery,Beijing Children’s Hospital,Capital Medical University,Beijing 100045,China
  • Received:2020-12-14 Revised:2021-06-02 Accepted:2021-06-29 Online:2021-03-05 Published:2021-11-10
  • Contact: Jun TAI
  • About author:ZHAO Jin,born in 1995,M. S. candidate. His research interests include software engineering,digital medicine
    SONG Wen’ai,born in 1964,Ph. D.,professor. Her research interests include digital medicine,computer vision
    TAI Jun,born in 1978,Ph. D. candidate,chief physician. His research interests include children sleep disordered breathing disease
    YANG Jijiang,born in 1968,Ph. D.,professor. His research interests include digital medicine
    WANG Qing,born in 1977,Ph. D.,research fellow. His research interests include artificial intelligence aided diagnosis
    LI Xiaodan, born in 1989, Ph. D., resident physician. Her research interests include children sleep disordered breathing disease
    LEI Yi,born in 1990,Ph. D.,assistant research fellow. His research interests include artificial intelligence aided diagnosis
    QIU Yue,born in 1996,M. S.,resident physician. Her research interests include children sleep disordered breathing disease.
  • Supported by:
    the Collaborative Innovation Project of Beijing Chaoyang District(CYXC2010)

儿童阻塞性睡眠呼吸暂停计算机人脸辅助诊断综述

赵津1, 宋文爱1, 邰隽2(), 杨吉江3, 王青3, 李晓丹4, 雷毅3, 邱悦4   

  1. 1.中北大学 软件学院,太原 030051
    2.首都儿科研究所附属儿童医院 耳鼻咽喉头颈外科,北京 100020
    3.清华大学 自动化系,北京 100084
    4.首都医科大学附属北京儿童医院 耳鼻咽喉头颈外科 北京 100045
  • 通讯作者: 邰隽
  • 作者简介:赵津(1995—),男,山西阳泉人,硕士研究生,主要研究方向:软件工程、数字医疗
    宋文爱(1964—),女,山西临汾人,教授,博 士,主要研究方向:数字医疗、计算机视觉
    邰隽(1978—),男,辽宁辽阳人,主任医师,博士研究生,主要研究方向:儿童睡眠呼吸障碍疾病
    杨吉江(1968—),男,北京人,教授,博士,主要研究方向:数字医疗
    王青(1977—),男,北京人,博士,研究员,主要研究方向:人工智能辅助诊 断
    李晓丹(1989—),女,山东莱芜人,住院医师,博士,主要研究方向:儿童睡眠呼吸障碍疾病
    雷毅(1990—),山西汾阳人,男,助理研究员, 博士,主要研究方向:人工智能辅助诊断
    邱悦(1996—),女,江西省安人,住院医师,硕士,主要研究方向:儿童睡眠呼吸障碍疾病。
  • 基金资助:
    北京市朝阳区协同创新项目(CYXC2010)

Abstract:

Using face images in the diagnosis of Obstructive Sleep Apnea (OSA) in children can reduce the burden of doctors and improve the accuracy of diagnosis. Firstly, the current methods and their limitations of OSA in children clinical diagnosis were briefly described. Then, on the basis of studying the existing methods, combining with the methods of computer-aided face diagnosis of other diseases, the computer-aided face diagnosis methods of OSA in children were divided into three types: traditional computer-aided face diagnosis methods, transfer learning based diagnosis methods, and 3D face data based diagnosis methods. The key steps of the three types of methods were summarized, and the methods used in these key steps were compared, which provides different entry points for the future research of computer-aided face diagnosis for OSA in children. Finally, the opportunities and challenges in the future research of OSA in children diagnosis were analyzed.

Key words: computer-aided diagnosis, Obstructive Sleep Apnea (OSA) in children, face key point detection, face feature extraction, transfer learning

摘要:

利用人脸图片辅助诊断儿童阻塞性睡眠呼吸暂停(OSA)可以减轻医生的负担,提高诊断的准确率。首先,简要阐述了目前儿童OSA临床诊断中的方法及其局限性;然后,在研究了目前已有方法的基础上,结合计算机人脸辅助诊断其他疾病的方法,将计算机人脸辅助诊断儿童OSA的方法分为三种类型:传统的计算机人脸辅助诊断方法、基于迁移学习的诊断方法、基于3D人脸数据的诊断方法,综述了三种类型的方法中的关键步骤,并对这些关键步骤中使用的方法进行了对比研究,为将来儿童OSA计算机人脸辅助诊断的研究提供了不同的切入点;最后,分析了儿童OSA诊断未来研究中的机遇和挑战。

关键词: 计算机辅助诊断, 儿童阻塞性睡眠呼吸暂停, 人脸关键点检测, 人脸特征提取, 迁移学习

CLC Number: