Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (10): 2985-2990.DOI: 10.11772/j.issn.1001-9081.2020122046

Special Issue: 多媒体计算与计算机仿真

• Multimedia computing and computer simulation • Previous Articles     Next Articles

Deepfake image detection method based on autoencoder

ZHANG Ya1,2, JIN Xin1,2, JIANG Qian1,2, LEE Shin-jye3, DONG Yunyun1,2, YAO Shaowen1,2   

  1. 1. School of Software, Yunnan University, Kunming Yunnan 650504, China;
    2. Cross-border Cyberspace Security Engineering Research Center of Ministry of Education(Yunnan University), Kunming Yunnan 650504, China;
    3. Institute of Technology Management, Yang Ming Chiao Tung University, Hsinchu Taiwan 300093, China
  • Received:2020-12-28 Revised:2021-05-13 Online:2021-10-10 Published:2021-07-16
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (62002313, 61863036), the China Postdoctoral Science Foundation (2020T130564, 2019M653507), the Key Area Science and Technology Researching Program of Yunnan Province (202001BB050076), the Open Fund of Key Laboratory in Software Engineering of Yunnan Province (2020SE408), the Postdoctoral Science Research Foundation of Yunnan Province, the 12th Graduate Science Research and Innovation Project of Yunnan University (2020230, 2020231).

基于自动编码器的深度伪造图像检测方法

张亚1,2, 金鑫1,2, 江倩1,2, 李昕洁3, 董云云1,2, 姚绍文1,2   

  1. 1. 云南大学 软件学院, 昆明 650504;
    2. 教育部跨境网络空间安全工程研究中心(云南大学), 昆明 650504;
    3. 阳明交通大学 科技管理研究所, 台湾 新竹 300093
  • 通讯作者: 江倩
  • 作者简介:张亚(1997-),女,甘肃武威人,硕士研究生,主要研究方向:图像取证、深度学习;金鑫(1987-),男,河南商丘人,副教授,博士,CCF会员,主要研究方向:人工神经网络、图像处理、遥感信息处理;江倩(1987-),女,云南昆明人,助理研究员,博士,主要研究方向:机器学习、图像处理、生物信息;李昕洁(1974-),男,台湾新竹人,教授,博士,主要研究方向:机器学习、决策支持系统;董云云(1989-),女,云南昆明人,讲师,硕士,主要研究方向:大数据安全、网络空间安全、分布式索引;姚绍文(1966-),男,云南昆明人,教授,博士生导师,博士,主要研究方向:神经网络、云计算、大数据。
  • 基金资助:
    国家自然科学基金资助项目(62002313,61863036);中国博士后科学基金资助项目(2020T130564,2019M653507);云南省重点研发领域计划项目(202001BB050076);云南省软件工程重点实验室开放基金资助项目(2020SE408);云南省博士后科研基金资助项目;云南大学第12届研究生科研创新项目(2020230,2020231)。

Abstract: The image forgery method based on deep learning can generate images which are difficult to distinguish with the human eye. Once the technology is abused to produce fake images and videos, it will have a serious negative impact on a country's politics, economy, and culture, as well as the social life and personal privacy. To solve the problem, a Deepfake detection method based on autoencoder was proposed. Firstly, the Gaussian filtering was used to preprocess the image, and the high-frequency information was extracted as the input of the model. Secondly, the autoencoder was used to extract features from the image. In order to obtain better classification effect, an attention mechanism module was added to the encoder. Finally, it was proved by the ablation experiments that the proposed preprocessing method and the addition of attention mechanism module were helpful for the Deepfake image detection. Experimental results show that, compared with ResNet50, Xception and InceptionV3, the proposed method can effectively detect images forged by multiple generation methods when the dataset has a small sample size and contains multiple scenes, and its average accuracy is up to 97.10%, which is significantly better than those of the comparison methods, and its generalization performance is also significantly better than those of the comparison methods.

Key words: Deepfake detection, Deepfake image, autoencoder, Generative Adversarial Network (GAN), attention mechanism

摘要: 基于深度学习的图像伪造方法生成的图像肉眼难辨,一旦该技术被滥用于制作虚假图像和视频,可能会对国家政治、经济、文化造成严重的负面影响,也可能会对社会生活和个人隐私构成威胁。针对上述问题,提出了一种基于自动编码器的深度伪造Deepfake图像检测方法。首先,借助高斯滤波对图像进行预处理,提取高频信息作为模型输入;然后,利用自动编码器对图像进行特征提取,并在编码器中添加注意力机制模块以获取更好的分类效果;最后,通过消融实验证明,采用所提的预处理方法和添加注意力机制模块有助于伪造图像检测。实验结果表明,与ResNet50、Xception以及InceptionV3相比,所提方法在数据集样本量较小且包含的场景丰富时,可以有效检测多种生成方法所伪造的图像,其平均准确率可达97.10%,明显优于对比方法,且其泛化性能也明显优于对比方法。

关键词: Deepfake检测, 深度伪造图像, 自动编码器, 生成对抗网络, 注意力机制

CLC Number: