[1] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2014:2672-2680. [2] 梁瑞刚, 吕培卓, 赵月, 等. 视听觉深度伪造检测技术研究综述[J]. 信息安全学报, 2020, 5(2):1-17.(LIANG R G, LYU P Z, ZHAO Y, et al. A survey of audiovisual deepfake detection techniques[J]. Journal of Cyber Security, 2020, 5(2):1-17.) [3] 陈曦. AI换脸越来越溜儿谁能阻止它走向堕落[EB/OL]. (2020-12-09)[2020-12-14]. https://m.chinanews.com/wap/detail/chs/zw/9357587.shtml. (CHEN X. AI face changes are becoming realistic, and who can stop it from falling[EB/OL]. (2020-12-09)[2020-12-14]. https://m.chinanews.com/wap/detail/chs/zw/9357587.shtml.) [4] 汤桂花, 孙磊, 毛秀青, 等. 基于深度对齐网络的生成对抗网络伪造人脸检测[J]. 计算机应用, 2021, 41(7):1922-1927. (TANG G H, SUN L, MAO X Q, et al. Generative adversarial network synthesized face detection based on deep alignment network[J]. Journal of Computer Applications, 2021, 41(7):1922-1927.) [5] NGUYEN T T, NGUYEN Q V H, NGUYEN C M D T, et al. Deep learning for deepfakes creation and detection:a survey[EB/OL]. (2021-04-26)[2021-05-02]. https://arxiv.org/pdf/1909.11573.pdf. [6] DURALL R, KEUPER M, PFREUNDT F J, et al. Unmasking DeepFakes with simple features[EB/OL]. (2020-03-04)[2020-11-02]. https://arxiv.org/pdf/1911.00686.pdf. [7] MO H X, CHEN B L, LUO W Q. Fake faces identification via convolutional neural network[C]//Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security. New York:ACM, 2018:43-47. [8] HSU C C, LEE C Y, ZHUANG Y X. Learning to detect fake face images in the wild[C]//Proceedings of the 2018 International Symposium on Computer Consumer and Control. Piscataway:IEEE, 2018:388-391. [9] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [10] CHOLLET F. Xception:deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:1800-1807. [11] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:2818-2826. [12] LIN X M, LI J, ZENG H L, et al. Font generation based on least squares conditional generative adversarial nets[J]. Multimedia Tools and Applications, 2019, 78(1):783-797. [13] COLLIER E, DUFFY K, GANGULY S, et al. Progressively growing generative adversarial networks for high resolution semantic segmentation of satellite images[C]//Proceedings of the 18th IEEE International Conference on Data Mining Workshops. Piscataway:IEEE, 2018:763-769. [14] KARRAS T, LAINE S, AILA T. A style-based generator architecture for generative adversarial networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:4396-4405. [15] KARRAS T, LAINE S, AITTALA M, et al. Analyzing and improving the image quality of StyleGAN[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2020:8107-8116. [16] CHOI Y, CHOI M, KIM M, et al. StarGAN:unified generative adversarial networks for multi-domain image-to-image translation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:8789-8797. [17] PARK T, LIU M Y, WANG T C, et al. Semantic image synthesis with spatially-adaptive normalization[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:2332-2341. [18] BROCK A, DONAHUE J, SIMONYAN K. Large scale GAN training for high fidelity natural image synthesis[EB/OL]. (2019-02-25)[2020-12-09]. https://arxiv.org/pdf/1809.11096.pdf. [19] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023. [20] WANG S Y, WANG O, ZHANG R, et al. CNN-generated images are surprisingly easy to spot for now[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2020:8692-8701. |