Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (11): 3127-3131.DOI: 10.11772/j.issn.1001-9081.2021010061
• Artificial intelligence • Previous Articles Next Articles
Xiaolong LIU1(), Shitong WANG2
Received:
2021-01-13
Revised:
2021-03-25
Accepted:
2021-03-30
Online:
2021-04-15
Published:
2021-11-10
Contact:
Xiaolong LIU
About author:
LIU Xiaolong, born in 1995, M. S. candidate. His research interests include artificial intelligence, pattern recognition, machine learning.Supported by:
通讯作者:
刘晓龙
作者简介:
刘晓龙(1995—),男,山东潍坊人,硕士研究生,主要研究方向:人工智能、模式识别、机器学习基金资助:
CLC Number:
Xiaolong LIU, Shitong WANG. Open set fuzzy domain adaptation algorithm via progressive separation[J]. Journal of Computer Applications, 2021, 41(11): 3127-3131.
刘晓龙, 王士同. 渐进式分离的开放集模糊域自适应算法[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3127-3131.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021010061
算法 | A→D | A→W | D→A | D→W | W→A | W→D | 平均值 |
---|---|---|---|---|---|---|---|
48.84 | 49.41 | 65.20 | 67.20 | 41.20 | 76.40 | 58.42 | |
DAN | 88.12 | 90.05 | 93.40 | 96.10 | 84.90 | 99.36 | 91.98 |
DANN | 75.50 | 60.57 | 62.70 | 88.90 | 63.00 | 98.32 | 75.17 |
SVM | 83.44 | 78.30 | 80.06 | 93.56 | 75.68 | 98.09 | 84.85 |
CORAL | 79.62 | 77.29 | 81.63 | 95.93 | 69.31 | 99.36 | 83.86 |
GFK | 80.25 | 77.29 | 77.14 | 90.17 | 90.17 | 99.36 | 82.44 |
BDA | 87.26 | 82.37 | 88.72 | 96.64 | 96.64 | 99.36 | 90.13 |
SFDA | 94.90 | 89.85 | 91.86 | 96.95 | 90.65 | 99.36 | 93.93 |
Tab. 1 Accuracy comparison of 6 Office dataset domain transformation experiments under close-set condition
算法 | A→D | A→W | D→A | D→W | W→A | W→D | 平均值 |
---|---|---|---|---|---|---|---|
48.84 | 49.41 | 65.20 | 67.20 | 41.20 | 76.40 | 58.42 | |
DAN | 88.12 | 90.05 | 93.40 | 96.10 | 84.90 | 99.36 | 91.98 |
DANN | 75.50 | 60.57 | 62.70 | 88.90 | 63.00 | 98.32 | 75.17 |
SVM | 83.44 | 78.30 | 80.06 | 93.56 | 75.68 | 98.09 | 84.85 |
CORAL | 79.62 | 77.29 | 81.63 | 95.93 | 69.31 | 99.36 | 83.86 |
GFK | 80.25 | 77.29 | 77.14 | 90.17 | 90.17 | 99.36 | 82.44 |
BDA | 87.26 | 82.37 | 88.72 | 96.64 | 96.64 | 99.36 | 90.13 |
SFDA | 94.90 | 89.85 | 91.86 | 96.95 | 90.65 | 99.36 | 93.93 |
开放性 | A→D | A→W | D→A | D→W | W→A | W→D | 平均值 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
均值 | 方差 | 均值 | 方差 | 均值 | 方差 | 均值 | 方差 | 均值 | 方差 | 均值 | 方差 | |||
0.2 | 95.33 | ±0.00 | 88.44 | ±1.12 | 91.03 | ±0.89 | 91.38 | ±0.81 | 91.09 | ±0.46 | 95.67 | ±0.72 | 92.16 | |
0.4 | 95.80 | ±0.08 | 89.21 | ±0.95 | 92.99 | ±0.54 | 89.89 | ±0.31 | 91.86 | ±0.63 | 96.29 | ±0.08 | 91.61 | |
0.5 | 96.22 | ±0.11 | 89.30 | ±1.44 | 91.97 | ±1.42 | 91.37 | ±0.48 | 90.18 | ±1.70 | 95.81 | ±0.11 | 92.48 | |
0.6 | 96.40 | ±0.07 | 89.32 | ±1.68 | 90.70 | ±1.64 | 91.43 | ±0.52 | 90.68 | ±1.49 | 95.66 | ±0.59 | 91.66 | |
0.8 | 96.79 | ±0.07 | 92.67 | ±0.36 | 92.75 | ±1.90 | 90.95 | ±0.53 | 92.45 | ±1.58 | 95.45 | ±0.08 | 92.76 | |
1.0 | 94.28 | ±0.00 | 93.79 | ±0.00 | 90.65 | ±0.00 | 92.20 | ±0.00 | 90.19 | ±0.00 | 96.10 | ±0.00 | 92.87 |
Tab. 2 Means and variances of accuracies of 6 Office dataset domain transformation experiments with different open degrees
开放性 | A→D | A→W | D→A | D→W | W→A | W→D | 平均值 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
均值 | 方差 | 均值 | 方差 | 均值 | 方差 | 均值 | 方差 | 均值 | 方差 | 均值 | 方差 | |||
0.2 | 95.33 | ±0.00 | 88.44 | ±1.12 | 91.03 | ±0.89 | 91.38 | ±0.81 | 91.09 | ±0.46 | 95.67 | ±0.72 | 92.16 | |
0.4 | 95.80 | ±0.08 | 89.21 | ±0.95 | 92.99 | ±0.54 | 89.89 | ±0.31 | 91.86 | ±0.63 | 96.29 | ±0.08 | 91.61 | |
0.5 | 96.22 | ±0.11 | 89.30 | ±1.44 | 91.97 | ±1.42 | 91.37 | ±0.48 | 90.18 | ±1.70 | 95.81 | ±0.11 | 92.48 | |
0.6 | 96.40 | ±0.07 | 89.32 | ±1.68 | 90.70 | ±1.64 | 91.43 | ±0.52 | 90.68 | ±1.49 | 95.66 | ±0.59 | 91.66 | |
0.8 | 96.79 | ±0.07 | 92.67 | ±0.36 | 92.75 | ±1.90 | 90.95 | ±0.53 | 92.45 | ±1.58 | 95.45 | ±0.08 | 92.76 | |
1.0 | 94.28 | ±0.00 | 93.79 | ±0.00 | 90.65 | ±0.00 | 92.20 | ±0.00 | 90.19 | ±0.00 | 96.10 | ±0.00 | 92.87 |
1 | ADAMS N. Dataset shift in machine learning [J]. Journal of the Royal Statistical Society, 2010, 173(1):274-274. 10.1111/j.1467-985x.2009.00624_10.x |
2 | LU J, BEHBOOD V, HAO P, et al. Transfer learning using computational intelligence: a survey [J]. Knowledge-Based Systems, 2015, 80: 14-23. 10.1016/j.knosys.2015.01.010 |
3 | MOTIION S, PICCIRILLI M, ADJEROH D A, et al. Unified deep supervised domain adaptation and generalization [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5715-5725. 10.1109/iccv.2017.609 |
4 | WANG J D, CHEN Y Q, HAO S J, et al. Balanced distribution adaptation for transfer learning [C]// Proceedings of the 2017 IEEE International Conference on Data Mining. Piscataway: IEEE, 2017:1129-1134. 10.1109/icdm.2017.150 |
5 | LONG M S, WANG J M, DING G G, et al. Transfer feature learning with joint distribution adaptation [C]// Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013:2200-2207. 10.1109/iccv.2013.274 |
6 | BUSTO P P, GALL J. Open set domain adaptation [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017:754-763. 10.1109/iccv.2017.88 |
7 | 唐宋,陈利娟,陈志贤,等.基于目标域局部近邻几何信息的域自适应图像分类方法[J].计算机应用,2017,37(4):1164-1168. 10.11772/j.issn.1001-9081.2017.04.1164 |
TANG S, CHEN L J, CHEN Z X, et al. Domain adaptation image classification based on target local-neighbor geometrical information [J]. Journal of Computer Applications, 2017, 37(4): 1164-1168. 10.11772/j.issn.1001-9081.2017.04.1164 | |
8 | GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks [J]. Journal of Machine Learning Research, 2016, 17: 1-35. 10.1007/978-3-319-58347-1_10 |
9 | SUN B C, FENG J S, SAENKO K. Return of frustratingly easy domain adaptation [C]// Proceedings of the 2016 30th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 2058-2065. |
10 | LONG M S, CAO Y, WANG J M, et al. Learning transferable features with deep adaptation networks [C]// Proceedings of the 2015 32nd International Conference on Machine Learning. New York: ACM, 2015: 97-105. |
11 | BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples [J]. Journal of Machine Learning Research, 2006, 7: 2399-2434. |
12 | LONG M S, WANG J M, DING G G, et al. Adaptation regularization: a general framework for transfer learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5): 1076-1089. 10.1109/tkde.2013.111 |
13 | BAKTASHMOTLAGH M, FARAKI M, DRUMMOND T, et al. Learning factorized representations for open-set domain adaptation [EB/OL]. [2020-12-09]. . |
14 | PAN S J, YANG Q. A survey on transfer learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. 10.1109/tkde.2009.191 |
15 | 刘晓龙,王士同.面向开放集图像分类的模糊域自适应方法[J].计算机科学与探索,2021,15(3):515-523. 10.1049/ipr2.12266 |
LIU X L, WANG S T. Fuzzy domain adaptation algorithm for open set image classification [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(3): 515-523. 10.1049/ipr2.12266 | |
16 | SAITO K, YAMAMOTO S, USHIKU Y, et al. Open set domain adaptation by backpropagation [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS11209. Cham: Springer, 2018: 156-171. |
17 | LIU H, CAO Z J, LONG M S, et al. Separate to adapt: open set domain adaptation via progressive separation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2922-2931. 10.1109/cvpr.2019.00304 |
18 | SCHEIRER W J, DE REZENDE ROCHA A, SAPKOTA A, et al. Toward open set recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(7): 1757-1772. 10.1109/tpami.2012.256 |
19 | 王骏,王士同.基于混合距离学习的双指数模糊C均值算法[J].软件学报,2010,21(8):1878-1888. 10.3724/SP.J.1001.2010.03607 |
WANG J, WANG S T. Double indices FCM algorithm based on hybrid distance metric learning [J]. Journal of Software, 2010, 21(8): 1878-1888. 10.3724/SP.J.1001.2010.03607 | |
20 | ZUO H, ZHANG G Q, PEDRYCZ W, et al. Fuzzy regression transfer learning in Takagi-Sugeno fuzzy models [J]. IEEE Transactions on Fuzzy Systems, 2017, 25(6): 1795-1807. 10.1109/tfuzz.2016.2633376 |
21 | SAENKO K, KULIS B, FRITZ M, et al. Adapting visual category models to new domains [C]// Proceedings of the 2010 European Conference on Computer Vision, LNCS6314. Berlin: Springer, 2010: 213-226. |
22 | GONG B Q, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation [C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2066-2073. 10.1109/cvpr.2012.6247911 |
23 | FERNANDO B, HABRARD A, SEBBAN M, et al. Unsupervised visual domain adaptation using subspace alignment [C]// Proceedings of the 2013 IEEE International Conference on Computer Vision. PiscatawayIEEE, 2013: 2960-2967. 10.1109/iccv.2013.368 |
24 | 史荧中,王士同,蒋亦樟,等.迁移学习支持向量回归机[J].计算机应用,2013,33(11):3084-3089. 10.11772/j.issn.1001-9081.2013.11.3084 |
SHI Y Z, WANG S T, JIANG Y Z, et al. Transfer learning support vector regression [J]. Journal of Computer Applications, 2013, 33(11): 3084-3089. 10.11772/j.issn.1001-9081.2013.11.3084 | |
25 | GOPALAN R, LI R N, CHELLAPPA R. Domain adaptation for object recognition: an unsupervised approach [C]// Proceedings of the 2011 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2011: 999-1006. 10.1109/iccv.2011.6126344 |
[1] | GUO Mian, ZHANG Jinyou. Computation offloading policy for machine learning in mobile edge computing environments [J]. Journal of Computer Applications, 2021, 41(9): 2639-2645. |
[2] | MAO Mingze, CAO Ruihao, YAN Chungang. Semi-supervised classification algorithm based on weight diversity [J]. Journal of Computer Applications, 2021, 41(9): 2473-2480. |
[3] | QIN Binbin, PENG Liangkang, LU Xiangming, QIAN Jiangbo. Research progress on driver distracted driving detection [J]. Journal of Computer Applications, 2021, 41(8): 2330-2337. |
[4] | CHEN Zhengtao, HUANG Can, YANG Bo, ZHAO Li, LIAO Yong. Yak face recognition algorithm of parallel convolutional neural network based on transfer learning [J]. Journal of Computer Applications, 2021, 41(5): 1332-1336. |
[5] | JIANG Qianyu, WANG Fengying, JIA Lipeng. Malware detection method based on perceptual hash algorithm and feature fusion [J]. Journal of Computer Applications, 2021, 41(3): 780-785. |
[6] | WANG Jinkai, JIA Xu. Vein recognition algorithm based on Siamese nonnegative matrix factorization with transferability [J]. Journal of Computer Applications, 2021, 41(3): 898-903. |
[7] | QIN Jing, ZUO Changqing, WANG Zumin, JI Changqing, WANG Baofeng. Design of abnormal electrocardiograph monitoring model based on stacking classifier [J]. Journal of Computer Applications, 2021, 41(3): 887-890. |
[8] | MENG Xiangrui, YANG Wenzhong, WANG Ting. Survey of sentiment analysis based on image and text fusion [J]. Journal of Computer Applications, 2021, 41(2): 307-317. |
[9] | Jianfang CAO, Minmin YAN, Yiming JIA, Xiaodong TIAN. Application of Inception-v3 model integrated with transfer learning in dynasty identification of ancient murals [J]. Journal of Computer Applications, 2021, 41(11): 3219-3227. |
[10] | Haojie LOU, Yuanlin ZHENG, Kaiyang LIAO, Hao LEI, Jia LI. Defect target detection for printed matter based on Siamese-YOLOv4 [J]. Journal of Computer Applications, 2021, 41(11): 3206-3212. |
[11] | Jin ZHAO, Wen’ai SONG, Jun TAI, Jijiang YANG, Qing WANG, Xiaodan LI, Yi LEI, Yue QIU. Review of computer-aided face diagnosis for obstructive sleep apnea in children [J]. Journal of Computer Applications, 2021, 41(11): 3394-3401. |
[12] | WANG Yahui, QIAN Yuhua, LIU Guoqing. Ordinal decision tree algorithm based on fuzzy advantage complementary mutual information [J]. Journal of Computer Applications, 2021, 41(10): 2785-2792. |
[13] | JIANG Yangsheng, WANG Shengnan, TU Jiaqi, LI Sha, WANG Hongjun. Comprehensive prediction of thermal comfort and energy consumption for high-speed railway stations [J]. Journal of Computer Applications, 2021, 41(1): 249-257. |
[14] | HUANG Xueyu, XU Haote, TAO Jianwen. Multi-source adaptation classification framework with feature selection [J]. Journal of Computer Applications, 2020, 40(9): 2499-2506. |
[15] | ZHANG Chenxi, TANG Shu, TANG Ke. Strategies of parameter fault detection for rocket engines based on transfer learning [J]. Journal of Computer Applications, 2020, 40(9): 2774-2780. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||