Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (2): 557-564.DOI: 10.11772/j.issn.1001-9081.2021020273
• Computer software technology • Previous Articles Next Articles
Wei LI, Qunqun WU, Yiwen ZHANG()
Received:
2021-02-27
Revised:
2021-04-21
Accepted:
2021-04-28
Online:
2022-02-11
Published:
2022-02-10
Contact:
Yiwen ZHANG
About author:
LI Wei, born in 1969, Ph. D., professor. Her research interests include software engineering, virtual reality human-computer interaction, data mining.Supported by:
通讯作者:
张以文
作者简介:
李炜(1969—),女,安徽合肥人,教授,博士,主要研究方向:软件工程、虚拟现实人机互动、数据挖掘;基金资助:
CLC Number:
Wei LI, Qunqun WU, Yiwen ZHANG. Developer recommendation method based on E-CARGO model[J]. Journal of Computer Applications, 2022, 42(2): 557-564.
李炜, 吴群群, 张以文. 基于E-CARGO模型的开发者推荐方法[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 557-564.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021020273
开发者 | Ω1 | Ω2 | Ω3 |
---|---|---|---|
Λ1 | {(0.6, 0.5, 0.8, 0.6)} | {(0.8, 0.5, 0.4, 0.8)} | {(0.5, 0.5, 0.9, 0.8)} |
Λ2 | {(0.8, 0.5, 0.4, 0.8) (0.6, 0.6, 0.6, 0.8) (0.8, 0.6, 0.6, 0.8)} | {(0.7, 0.5, 0.5, 0.5) (0.6, 0.6, 0.6, 0.6) (0.7, 0.8, 0.5, 0.9)} | {(0.8, 0.7, 0.6, 0.6) (0.8, 0.8, 0.5, 0.7) (0.7, 0.7, 0.8, 0.8) (0.9, 0.7, 0.8, 0.8)} |
Λ3 | {(0.8, 0.7, 0.9, 0.8) (0.9, 0.8, 0.9, 0.8) (0.8, 0.8, 0.6, 0.8) (0.7, 0.7, 0.8, 0.8)} | {(0.7, 0.6, 0.9, 0.8) (0.9, 0.7, 0.5, 0.6) (0.8, 0.6, 0.6, 0.7)} | {(0.8, 0.8, 0.9, 0.8) (0.8, 0.8, 0.8, 0.8) (0.8, 0.7, 0.9, 0.8)} |
Λ4 | {(0.5, 0.8, 0.8, 0.8) (0.6, 0.7, 0.9, 0.9) (0.7, 0.6, 0.7, 0.8) (0.6, 0.6, 0.8, 0.8)} | {(0.8, 0.6, 0.8, 0.9) (0.8, 0.8, 0.9, 0.8) (0.8, 0.8, 0.6, 0.6) (0.6, 0.7, 0.7, 0.9)} | {(0.7, 0.7, 0.9, 0.9)} |
Λ5 | {(0.9, 0.6, 0.8, 0.9) (0.8, 0.7, 0.9, 0.8)} | {(0.6, 0.6, 0.8, 0.8) (0.5, 0.8, 0.9, 0.6)} | {(0.8, 0.9, 0.9, 0.6)} |
Tab. 1 Ability index evaluation information
开发者 | Ω1 | Ω2 | Ω3 |
---|---|---|---|
Λ1 | {(0.6, 0.5, 0.8, 0.6)} | {(0.8, 0.5, 0.4, 0.8)} | {(0.5, 0.5, 0.9, 0.8)} |
Λ2 | {(0.8, 0.5, 0.4, 0.8) (0.6, 0.6, 0.6, 0.8) (0.8, 0.6, 0.6, 0.8)} | {(0.7, 0.5, 0.5, 0.5) (0.6, 0.6, 0.6, 0.6) (0.7, 0.8, 0.5, 0.9)} | {(0.8, 0.7, 0.6, 0.6) (0.8, 0.8, 0.5, 0.7) (0.7, 0.7, 0.8, 0.8) (0.9, 0.7, 0.8, 0.8)} |
Λ3 | {(0.8, 0.7, 0.9, 0.8) (0.9, 0.8, 0.9, 0.8) (0.8, 0.8, 0.6, 0.8) (0.7, 0.7, 0.8, 0.8)} | {(0.7, 0.6, 0.9, 0.8) (0.9, 0.7, 0.5, 0.6) (0.8, 0.6, 0.6, 0.7)} | {(0.8, 0.8, 0.9, 0.8) (0.8, 0.8, 0.8, 0.8) (0.8, 0.7, 0.9, 0.8)} |
Λ4 | {(0.5, 0.8, 0.8, 0.8) (0.6, 0.7, 0.9, 0.9) (0.7, 0.6, 0.7, 0.8) (0.6, 0.6, 0.8, 0.8)} | {(0.8, 0.6, 0.8, 0.9) (0.8, 0.8, 0.9, 0.8) (0.8, 0.8, 0.6, 0.6) (0.6, 0.7, 0.7, 0.9)} | {(0.7, 0.7, 0.9, 0.9)} |
Λ5 | {(0.9, 0.6, 0.8, 0.9) (0.8, 0.7, 0.9, 0.8)} | {(0.6, 0.6, 0.8, 0.8) (0.5, 0.8, 0.9, 0.6)} | {(0.8, 0.9, 0.9, 0.6)} |
开发者 | Ω1 | Ω2 | Ω3 |
---|---|---|---|
Λ1 | {0.627} | {0.63} | {0.672} |
Λ2 | {0.63, 0.648, 0.703} | {0.555, 0.6, 0.722} | {0.678, 0.701, 0.749, 0.804} |
Λ3 | {0.802, 0.853, 0.75, 0.749} | {0.751, 0.681, 0.679} | {0.825, 0. 8, 0.802} |
Λ4 | {0.718, 0.771, 0.701, 0.698} | {0.777, 0.825, 0.702, 0.721} | {0.798} |
Λ5 | {0.805, 0.802} | {0.698, 0.694} | {0.8} |
Tab. 2 Historical comprehensive ability set of developers
开发者 | Ω1 | Ω2 | Ω3 |
---|---|---|---|
Λ1 | {0.627} | {0.63} | {0.672} |
Λ2 | {0.63, 0.648, 0.703} | {0.555, 0.6, 0.722} | {0.678, 0.701, 0.749, 0.804} |
Λ3 | {0.802, 0.853, 0.75, 0.749} | {0.751, 0.681, 0.679} | {0.825, 0. 8, 0.802} |
Λ4 | {0.718, 0.771, 0.701, 0.698} | {0.777, 0.825, 0.702, 0.721} | {0.798} |
Λ5 | {0.805, 0.802} | {0.698, 0.694} | {0.8} |
开发者 | Ω1 | Ω2 | Ω3 |
---|---|---|---|
Λ1 | {0.627, 0, 0} | {0.63, 0, 0} | {0.672, 0, 0} |
Λ2 | {0.66, 0.036, 0.012} | {0.626, 0.081, 0.03} | {0.733, 0.055, 0.01} |
Λ3 | {0.789, 0.049, 0.008} | {0.704, 0.04, 0.009} | {0.809, 0.013, 0.005} |
Λ4 | {0.722, 0.031, 0.014} | {0.756, 0.056, 0.005} | {0.798, 0, 0} |
Λ5 | {0.804, 0.002, 0.001} | {0.696, 0.003, 0.001} | {0.8, 0, 0} |
Tab. 3 Comprehensive ability cloud model of developers for different subtasks
开发者 | Ω1 | Ω2 | Ω3 |
---|---|---|---|
Λ1 | {0.627, 0, 0} | {0.63, 0, 0} | {0.672, 0, 0} |
Λ2 | {0.66, 0.036, 0.012} | {0.626, 0.081, 0.03} | {0.733, 0.055, 0.01} |
Λ3 | {0.789, 0.049, 0.008} | {0.704, 0.04, 0.009} | {0.809, 0.013, 0.005} |
Λ4 | {0.722, 0.031, 0.014} | {0.756, 0.056, 0.005} | {0.798, 0, 0} |
Λ5 | {0.804, 0.002, 0.001} | {0.696, 0.003, 0.001} | {0.8, 0, 0} |
开发者 | Ω1 | Ω2 | Ω3 |
---|---|---|---|
Λ1 | 0 | 1 | 0 |
Λ2 | 0 | 0 | 1 |
Λ3 | 1 | 0 | 0 |
Λ4 | 0 | 1 | 0 |
Λ5 | 1 | 0 | 0 |
Tab. 4 Developer recommendation matrix T
开发者 | Ω1 | Ω2 | Ω3 |
---|---|---|---|
Λ1 | 0 | 1 | 0 |
Λ2 | 0 | 0 | 1 |
Λ3 | 1 | 0 | 0 |
Λ4 | 0 | 1 | 0 |
Λ5 | 1 | 0 | 0 |
冲突率 | m | n | cplex求解时间/ms | 穷举法求解时间/ms | 贪心法求解时间/ms | cplex> 贪心法的次数 | cplex= 贪心法的次数 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Ave | Max | Min | Ave | Max | Min | Ave | |||||
0.1 | 10 | 5 | 184.41 | 5.89 | 11.52 | 780.65 | 75.63 | 86.96 | 1.12 | 0.44 | 0.54 | 85 | 15 |
20 | 10 | 227.44 | 12.14 | 23.42 | N/A | N/A | N/A | 2.61 | 1.56 | 1.80 | 99 | 1 | |
40 | 20 | 300.95 | 37.02 | 74.03 | N/A | N/A | N/A | 9.32 | 5.76 | 6.46 | 100 | 0 | |
10 | 3 | 178.26 | 5.58 | 11.29 | 215.48 | 6.97 | 23.90 | 0.91 | 0.32 | 0.40 | 67 | 33 | |
20 | 6 | 198.77 | 8.38 | 17.31 | N/A | N/A | N/A | 2.28 | 0.99 | 1.17 | 86 | 14 | |
40 | 13 | 242.78 | 25.56 | 45.99 | N/A | N/A | N/A | 5.46 | 3.89 | 4.36 | 100 | 0 | |
0.2 | 10 | 5 | 193.44 | 5.90 | 13.45 | 4 609.19 | 60.36 | 35.84 | 1.41 | 0.45 | 0.56 | 88 | 11 |
20 | 10 | 231.38 | 12.73 | 28.89 | N/A | N/A | N/A | 2.91 | 1.58 | 1.91 | 94 | 6 | |
40 | 20 | 328.72 | 52.08 | 97.78 | N/A | N/A | N/A | 9.34 | 5.77 | 6.49 | 100 | 0 | |
10 | 3 | 185.86 | 5.61 | 12.05 | 235.25 | 13.36 | 24.29 | 1.39 | 0.32 | 0.43 | 72 | 26 | |
20 | 6 | 212.79 | 9.19 | 19.83 | N/A | N/A | N/A | 1.75 | 0.97 | 1.18 | 90 | 10 | |
40 | 13 | 301.46 | 31.45 | 66.72 | N/A | N/A | N/A | 6.59 | 3.90 | 4.34 | 100 | 0 |
Tab. 5 Solving performance comparison among the proposed method,exhaustive method and greedy method
冲突率 | m | n | cplex求解时间/ms | 穷举法求解时间/ms | 贪心法求解时间/ms | cplex> 贪心法的次数 | cplex= 贪心法的次数 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Ave | Max | Min | Ave | Max | Min | Ave | |||||
0.1 | 10 | 5 | 184.41 | 5.89 | 11.52 | 780.65 | 75.63 | 86.96 | 1.12 | 0.44 | 0.54 | 85 | 15 |
20 | 10 | 227.44 | 12.14 | 23.42 | N/A | N/A | N/A | 2.61 | 1.56 | 1.80 | 99 | 1 | |
40 | 20 | 300.95 | 37.02 | 74.03 | N/A | N/A | N/A | 9.32 | 5.76 | 6.46 | 100 | 0 | |
10 | 3 | 178.26 | 5.58 | 11.29 | 215.48 | 6.97 | 23.90 | 0.91 | 0.32 | 0.40 | 67 | 33 | |
20 | 6 | 198.77 | 8.38 | 17.31 | N/A | N/A | N/A | 2.28 | 0.99 | 1.17 | 86 | 14 | |
40 | 13 | 242.78 | 25.56 | 45.99 | N/A | N/A | N/A | 5.46 | 3.89 | 4.36 | 100 | 0 | |
0.2 | 10 | 5 | 193.44 | 5.90 | 13.45 | 4 609.19 | 60.36 | 35.84 | 1.41 | 0.45 | 0.56 | 88 | 11 |
20 | 10 | 231.38 | 12.73 | 28.89 | N/A | N/A | N/A | 2.91 | 1.58 | 1.91 | 94 | 6 | |
40 | 20 | 328.72 | 52.08 | 97.78 | N/A | N/A | N/A | 9.34 | 5.77 | 6.49 | 100 | 0 | |
10 | 3 | 185.86 | 5.61 | 12.05 | 235.25 | 13.36 | 24.29 | 1.39 | 0.32 | 0.43 | 72 | 26 | |
20 | 6 | 212.79 | 9.19 | 19.83 | N/A | N/A | N/A | 1.75 | 0.97 | 1.18 | 90 | 10 | |
40 | 13 | 301.46 | 31.45 | 66.72 | N/A | N/A | N/A | 6.59 | 3.90 | 4.34 | 100 | 0 |
1 | 王怀民,尹刚,谢冰,等.基于网络的可信软件大规模协同开发与演化[J].中国科学:信息科学, 2014, 44(1): 1-19. |
WANG H M, YIN G, XIE B, et al. Research on network-based large-scale collaborative development and evolution of trustworthy software[J]. SCIENTIA SINICA Informations, 2014, 44(1): 1-19. | |
2 | BEGEL A, BOSCH J, STOREY M A. Social networking meets software development: perspectives from GitHub, MSDN, Stack Exchange, and TopCoder[J]. IEEE Software, 2013, 30(1): 52-66. 10.1109/ms.2013.13 |
3 | ŠMITE D, MOE N B, ŠĀBLIS A, et al. Software teams and their knowledge networks in large-scale software development[J]. Information and Software Technology, 2017, 86: 71-86. 10.1016/j.infsof.2017.01.003 |
4 | 刘鹏,张鹏臣,王念新.开源软件社区开发者协作网络结构演化分析——以Cloud Foundry社区为例[J].复杂系统与复杂性科学, 2019, 16(4): 31-43. 10.1007/978-981-15-1209-4_7 |
LIU P, ZHANG P C, WANG N X. Structure and evolution of developer collaboration network in Cloud Foundry OSS community[J]. Complex Systems and Complexity Science, 2019, 16(4): 31-43. 10.1007/978-981-15-1209-4_7 | |
5 | 刘晓,李兵,何鹏.开源软件社区开发者合作网络的演化分析[J].小型微型计算机系统, 2015, 36(9): 1921-1926. 10.3969/j.issn.1000-1220.2015.09.001 |
LIU X, LI B, HE P. Evolution analysis of developer collaboration network in open source software community[J]. Journal of Chinese Computer Systems, 2015, 36(9): 1921-1926. 10.3969/j.issn.1000-1220.2015.09.001 | |
6 | ALJEMABI M A, WANG Z J. Empirical study on the evolution of developer social networks[J]. IEEE Access, 2018, 6: 51049-51060. 10.1109/access.2018.2868427 |
7 | MENS T, CATALDO M, DAMIAN D. The social developer: the future of software development [guest editors' introduction][J]. IEEE Software, 2019, 36(1): 11-14. 10.1109/ms.2018.2874316 |
8 | LI G L, WANG J N, ZHENG Y D, et al. Crowdsourced data management: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(9): 2296-2319. 10.1109/tkde.2016.2535242 |
9 | COSENTINO V, IZQUIERDO J L C, CABOT J. A systematic mapping study of software development with GitHub[J]. IEEE Access, 2017, 5: 7173-7192. 10.1109/access.2017.2682323 |
10 | AHMED F, KILIC K. Fuzzy analytic hierarchy process: a performance analysis of various algorithms[J]. Fuzzy Sets and Systems, 2019, 362: 110-128. 10.1016/j.fss.2018.08.009 |
11 | ZHU H B, ZHOU M C. Role-based collaboration and its kernel mechanisms[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2006, 36(4): 578-589. 10.1109/tsmcc.2006.875726 |
12 | SUN X B, YANG H, XIA X, et al. Enhancing developer recommendation with supplementary information via mining historical commits[J]. Journal of Systems and Software, 2017, 134: 355-368. 10.1016/j.jss.2017.09.021 |
13 | ZHANG X H, WANG T, YIN G, et al. DevRec: a developer recommendation system for open source repositories [C]// Proceedings of the 2017 International Conference on Software Reuse, LNCS10221. Cham: Springer, 2017: 3-11. 10.1007/978-3-319-56856-0_1 |
14 | HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering [C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 173-182. 10.1145/3038912.3052569 |
15 | XIN X, HE X N, ZHANG Y F, et al. Relational collaborative filtering: modeling multiple item relations for recommendation [C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 125-134. 10.1145/3331184.3331188 |
16 | WANG X, HE X N, WANG M, et al. Neural graph collaborative filtering [C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174. 10.1145/3331184.3331267 |
17 | XIE X Q, WANG B, YANG X C. SoftRec: multi-relationship fused software developer recommendation[J]. Applied Sciences, 2020, 10(12): No.4333. 10.3390/app10124333 |
18 | ZHANG Z Y, SUN H L, ZHANG H Y. Developer recommendation for Topcoder through a meta-learning based policy model[J]. Empirical Software Engineering, 2020, 25(1): 859-889. 10.1007/s10664-019-09755-0 |
19 | ZHU H B, ZHOU M C. Roles in information systems: a survey[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2008, 38(3): 377-396. 10.1109/tsmcc.2008.919168 |
20 | ZHU H B, ZHOU M C, ALKINS R. Group role assignment via a Kuhn-Munkres algorithm-based solution[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2012, 42(3): 739-750. 10.1109/tsmca.2011.2170414 |
21 | ZHU H B. Avoiding conflicts by group role assignment[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46(4): 535-547. 10.1109/tsmc.2015.2438690 |
22 | ZHU H B, LIU D N, ZHANG S Q, et al. Solving the group multirole assignment problem by improving the ILOG approach[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(12): 3418-3424. 10.1109/tsmc.2016.2566680 |
23 | ZHU H B, SHENG Y, ZHOU X Z, et al. Group role assignment with cooperation and conflict factors[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(6): 851-863. 10.1109/tsmc.2016.2633244 |
24 | LIU D N, HUANG B Y, ZHU H B. Solving the tree-structured task allocation problem via group multirole assignment[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(1): 41-55. 10.1109/tase.2019.2908762 |
25 | ZHU H B, ZHU Y. Group role assignment with agents’ preferences [C]// Proceedings of the IEEE 14th International Conference on Networking, Sensing and Control. Piscataway: IEEE, 2017: 605-610. 10.1109/icnsc.2017.8000160 |
26 | ZHU H B. Group multi-role assignment with conflicting roles and agents[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(6): 1498-1510. 10.1109/jas.2020.1003354 |
27 | SAATY T L. Modeling unstructured decision problems — the theory of analytical hierarchies[J]. Mathematics and Computers in Simulation, 1978, 20(3): 147-158. 10.1016/0378-4754(78)90064-2 |
28 | WANG G Y, XU C L, LI D Y. Generic normal cloud model[J]. Information Sciences, 2014, 280: 1-15. 10.1016/j.ins.2014.04.051 |
29 | MA H, ZHU H B, LI K Q, et al. Collaborative optimization of service composition for data-intensive applications in a hybrid cloud[J]. IEEE Transactions on Parallel and Distributed Systems, 2019, 30(5): 1022-1035. 10.1109/tpds.2018.2879603 |
[1] | . YOLOv5s-MRD: an efficient fire and smoke detection algorithm for complex scenarios based on YOLOv5s [J]. Journal of Computer Applications, 0, (): 0-0. |
[2] | Qiye ZHANG, Xinrui ZENG. Efficient active-set method for support vector data description problem with Gaussian kernel [J]. Journal of Computer Applications, 2024, 44(12): 3808-3814. |
[3] | Yawei HUANG, Xuezhong QIAN, Wei SONG. Improved differential evolution algorithm based on dual-archive population size adaptive method [J]. Journal of Computer Applications, 2024, 44(12): 3844-3853. |
[4] | Hongru JIANG, Wei FANG. Survey of application of deep learning in meteorological data correction [J]. Journal of Computer Applications, 2024, 44(12): 3930-3940. |
[5] | . Improvement method of heuristic vehicle routing algorithm based on constrained spectral clustering [J]. Journal of Computer Applications, 0, (): 0-0. |
[6] | . Path planning of multi-UAV formation based on improved artificial potential field method [J]. Journal of Computer Applications, 0, (): 0-0. |
[7] | . Dual-population dual-stage evolutionary algorithm for complex constrained multi-objective optimization problems [J]. Journal of Computer Applications, 0, (): 0-0. |
[8] | Qin LENG, Zhengyuan MAO. Two echelon location-routing optimization considering facility sizing decision [J]. Journal of Computer Applications, 2024, 44(11): 3513-3520. |
[9] | Qingyuan PENG, Xiaofeng WANG, Junxia WANG, Yingying HUA, Ao TANG, Fei HE. Review of phase transition in satisfiability problems [J]. Journal of Computer Applications, 2024, 44(11): 3503-3512. |
[10] | Jie HUANG, Ruizi WU, Junli LI. Efficient adaptive robustness optimization algorithm for complex networks [J]. Journal of Computer Applications, 2024, 44(11): 3530-3539. |
[11] | Renke SUN, Zhiyu HUANGFU, Hu CHEN, Zhongnian LI, Xinzheng XU. Survey of neural architecture search [J]. Journal of Computer Applications, 2024, 44(10): 2983-2994. |
[12] | Antai SUN, Ye LIU, Dongmei XU. Dynamic surface asymptotic compensation algorithm for multi-agent systems [J]. Journal of Computer Applications, 2024, 44(10): 3151-3157. |
[13] | Chaoying YAN, Ziyi ZHANG, Yingnan QU, Qiuyu LI, Dixiang ZHENG, Lijun SUN. Double auction carbon trading based on consortium blockchain [J]. Journal of Computer Applications, 2024, 44(10): 3240-3245. |
[14] | . Dung beetle optimizer algorithm with restricted reverse learning and Cauchy-Gauss variation [J]. Journal of Computer Applications, 0, (): 0-0. |
[15] | Guanglei YAO, Juxia XIONG, Guowu YANG. Flower pollination algorithm based on neural network optimization [J]. Journal of Computer Applications, 2024, 44(9): 2829-2837. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||