Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (7): 2248-2255.DOI: 10.11772/j.issn.1001-9081.2021050831
• Multimedia computing and computer simulation • Previous Articles Next Articles
Wenjun FAN1, Shuguang ZHAO1(), Lizheng GUO2
Received:
2021-05-20
Revised:
2021-12-15
Accepted:
2021-12-29
Online:
2022-03-08
Published:
2022-07-10
Contact:
Shuguang ZHAO
About author:
FAN Wenjun, born in 1996, M. S. candidate. His research interests include artificial intelligence, target detection.Supported by:
通讯作者:
赵曙光
作者简介:
凡文俊(1996—),男,湖北天门人,硕士研究生,主要研究方向:人工智能、目标检测基金资助:
CLC Number:
Wenjun FAN, Shuguang ZHAO, Lizheng GUO. Ship detection algorithm based on improved RetinaNet[J]. Journal of Computer Applications, 2022, 42(7): 2248-2255.
凡文俊, 赵曙光, 郭力争. 基于改进RetinaNet的船舶检测算法[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 2248-2255.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021050831
数据集 | 船舶目标数量 | 图像尺寸 | 图像数量 | 分辨率/m | |||
---|---|---|---|---|---|---|---|
小目标 | 中等目标 | 大目标 | 高/px | 宽/px | |||
SSDD | 1 529 | 935 | 76 | 190~526 | 214~668 | 1 160 | 1~10 |
HRSID | 9 242 | 7 388 | 321 | 800 | 800 | 5 604 | 0.5~3 |
Tab. 1 HRSID dataset and SSD dataset
数据集 | 船舶目标数量 | 图像尺寸 | 图像数量 | 分辨率/m | |||
---|---|---|---|---|---|---|---|
小目标 | 中等目标 | 大目标 | 高/px | 宽/px | |||
SSDD | 1 529 | 935 | 76 | 190~526 | 214~668 | 1 160 | 1~10 |
HRSID | 9 242 | 7 388 | 321 | 800 | 800 | 5 604 | 0.5~3 |
ResNeXt | GAM模块 | Soft-NMS | AP/% | AP50/% | AP75/% |
---|---|---|---|---|---|
✕ | ✕ | ✕ | 52.3 | 90.0 | 57.4 |
√ | ✕ | ✕ | 53.9 | 91.3 | 58.5 |
√ | √ | ✕ | 55.6 | 92.7 | 59.4 |
√ | ✕ | √ | 55.5 | 92.3 | 60.1 |
√ | √ | √ | 56.1 | 92.8 | 60.7 |
Tab. 2 Ablation experimental results of each module of improved algorithm
ResNeXt | GAM模块 | Soft-NMS | AP/% | AP50/% | AP75/% |
---|---|---|---|---|---|
✕ | ✕ | ✕ | 52.3 | 90.0 | 57.4 |
√ | ✕ | ✕ | 53.9 | 91.3 | 58.5 |
√ | √ | ✕ | 55.6 | 92.7 | 59.4 |
√ | ✕ | √ | 55.5 | 92.3 | 60.1 |
√ | √ | √ | 56.1 | 92.8 | 60.7 |
模型 | 测试时间/s | AP/% | AP50 /% | AP75 /% |
---|---|---|---|---|
RetinaNet | 0.082 | 59.1 | 85.2 | 65.6 |
本文改进算法 | 0.136 | 61.5 | 86.1 | 69.0 |
Tab. 3 Performance comparison of RetinaNet algorithm before and after improvement
模型 | 测试时间/s | AP/% | AP50 /% | AP75 /% |
---|---|---|---|---|
RetinaNet | 0.082 | 59.1 | 85.2 | 65.6 |
本文改进算法 | 0.136 | 61.5 | 86.1 | 69.0 |
算法 | 测试时间/s | AP/% | AP50 /% | AP75 /% |
---|---|---|---|---|
YOLOv3 | 0.025 | 46.9 | 87.9 | 46.4 |
SSD | 0.029 | 52.5 | 91.2 | 57.0 |
Faster R-CNN | 0.200 | 55.6 | 90.3 | 63.4 |
Libra R-CNN | 0.060 | 55.4 | 91.6 | 62.0 |
CenterNet | 0.055 | 55.6 | 92.0 | 60.3 |
本文算法 | 0.050 | 56.1 | 92.8 | 60.7 |
Tab. 4 Performance comparison of different detection algorithms
算法 | 测试时间/s | AP/% | AP50 /% | AP75 /% |
---|---|---|---|---|
YOLOv3 | 0.025 | 46.9 | 87.9 | 46.4 |
SSD | 0.029 | 52.5 | 91.2 | 57.0 |
Faster R-CNN | 0.200 | 55.6 | 90.3 | 63.4 |
Libra R-CNN | 0.060 | 55.4 | 91.6 | 62.0 |
CenterNet | 0.055 | 55.6 | 92.0 | 60.3 |
本文算法 | 0.050 | 56.1 | 92.8 | 60.7 |
模型 | 近岸数据集 | 离岸数据集 |
---|---|---|
YOLOv3 | 27.9 | 51.3 |
SSD | 34.6 | 57.1 |
Faster R-CNN | 40.3 | 58.6 |
本文算法 | 41.9 | 59.6 |
Tab. 5 Detection precision comparison of different algorithms innear-shore and off-shore scenarios of SSDD dataset
模型 | 近岸数据集 | 离岸数据集 |
---|---|---|
YOLOv3 | 27.9 | 51.3 |
SSD | 34.6 | 57.1 |
Faster R-CNN | 40.3 | 58.6 |
本文算法 | 41.9 | 59.6 |
1 | WACKERMAN C C, FRIEDMAN K S, PICHEL W G, et al. Automatic detection of ships in RADARSAT-1 SAR imagery [J]. Canadian Journal of Remote Sensing, 2001, 27(5): 568-577. 10.1080/07038992.2001.10854896 |
2 | 陈慧元,刘泽宇,郭炜炜,等.基于级联卷积神经网络的大场景遥感图像舰船目标快速检测方法[J].雷达学报,2019,8(3):413-424. 10.12000/JR19041 |
CHEN H Y, LIU Z Y, GUO W W, et al. Fast detection of ship targets for large-scale remote sensing image based on a cascade convolutional neural network [J]. Journal of Radars, 2019, 8(3): 413-424. 10.12000/JR19041 | |
3 | ROBEY F C, FUHRMANN D R, KELLY E J, et al. A CFAR adaptive matched filter detector [J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(1): 208-216. 10.1109/7.135446 |
4 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. 10.1109/tpami.2016.2577031 |
5 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. 10.1109/cvpr.2016.91 |
6 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007. 10.1109/iccv.2017.324 |
7 | KANG M, JI K F, LENG X G, et al. Contextual region-based convolutional neural network with multilayer fusion for SAR ship detection [J]. Remote Sensing, 2017, 9(8): Article No.860. 10.3390/rs9080860 |
8 | JIAO J, ZHANG Y, SUN H, et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection [J]. IEEE Access, 2018, 6: 20881-20892. 10.1109/access.2018.2825376 |
9 | ZHANG T W, ZHANG X L. High-speed ship detection in SAR images based on a grid convolutional neural network [J]. Remote Sensing, 2019, 11(10): Article No.1206. 10.3390/rs11101206 |
10 | CUI Z Y, LI Q, CAO Z J, et al. Dense attention pyramid networks for multi-scale ship detection in SAR images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8983-8997. 10.1109/tgrs.2019.2923988 |
11 | ZHAO Y, ZHAO L J, LI C Y, et al. Pyramid attention dilated network for aircraft detection in SAR images [J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(4): 662-666. 10.1109/lgrs.2020.2981255 |
12 | 袁国文,张彩霞,杨阳,等.复杂场景下深度表示的SAR船舶目标检测算法[J].计算机工程与应用,2022,58(2):289-294. 10.3778/j.issn.1002-8331.2008-0117 |
YUAN G W, ZHANG C X, YANG Y, et al. SAR target detection algorithm for depth representation in complex scenes [J]. Computer Engineering and Applications, 2022, 58(2): 289-294. 10.3778/j.issn.1002-8331.2008-0117 | |
13 | PANG J M, CHEN K, SHI J P, et al. Libra R-CNN: towards balanced learning for object detection [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 821-830. 10.1109/cvpr.2019.00091 |
14 | GUO H Y, YANG X, WANG N N, et al. A CenterNet++ model for ship detection in SAR images [J]. Pattern Recognition, 2021, 112: Article No.107787. 10.1016/j.patcog.2020.107787 |
15 | ZHOU X Y, WANG D Q, KRÄHENBÜHL P. Objects as points [EB/OL]. [2021-03-03]. . |
16 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. 10.1109/cvpr.2015.7298594 |
17 | BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS —improving object detection with one line of code [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5562-5570. 10.1109/iccv.2017.593 |
18 | XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5987-5995. 10.1109/cvpr.2017.634 |
19 | ZHU X Z, CHENG D Z, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep networks [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6687-6696. 10.1109/iccv.2019.00679 |
20 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 2017 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. 10.1016/s0262-4079(17)32358-8 |
21 | WEI S J, ZENG X F, QU Q Z, et al. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation [J]. IEEE Access, 2020, 8: 120234-120254. 10.1109/access.2020.3005861 |
22 | LI J W, QU C W, SHAO J Q. Ship detection in SAR images based on an improved faster R-CNN [C]// Proceedings of the 2017 SAR in Big Data Era: Models, Methods and Applications. Piscataway: IEEE, 2017: 1-6. 10.1109/bigsardata.2017.8124934 |
23 | REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL] [2021-03-03]. . |
24 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[3] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[4] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[5] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[6] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[7] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[8] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[9] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[10] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[11] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[12] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[13] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[14] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[15] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||