Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (11): 3573-3579.DOI: 10.11772/j.issn.1001-9081.2021122124
• ChinaVR 2021 • Previous Articles
Received:
2021-12-17
Revised:
2022-02-28
Accepted:
2022-03-07
Online:
2022-05-17
Published:
2022-11-10
Contact:
Yongjian LIAN
About author:
GENG Yanbing, born in 1980, Ph. D., lecturer. Her research interests include image processing, pattern recognition, artificial intelligence.Supported by:
通讯作者:
廉永健
作者简介:
耿艳兵(1980—),女,河南漯河人,讲师,博士,CCF会员,主要研究方向:图像处理、模式识别、人工智能基金资助:
CLC Number:
Yanbing GENG, Yongjian LIAN. Cross‑resolution person re‑identification by generative adversarial network based on multi‑granularity features[J]. Journal of Computer Applications, 2022, 42(11): 3573-3579.
耿艳兵, 廉永健. 基于多粒度特征生成对抗网络的跨分辨率行人重识别[J]. 《计算机应用》唯一官方网站, 2022, 42(11): 3573-3579.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021122124
方法 | MLR‑CUHK03 | |||
---|---|---|---|---|
SSIM | PSNR/dB | LPIPS | rank‑1/% | |
GAN | 0.30 | 13.9 | 0.42 | 47.8 |
GAN+自注意力 | 0.61 | 19.2 | 0.19 | 65.3 |
GAN+识别网络(高层损失) | 0.41 | 18.1 | 0.23 | 76.9 |
GAN+识别网络(中低层损失) | 0.57 | 20.9 | 0.16 | 78.1 |
GAN+识别网络 (高层&中低层损失) | 0.61 | 21.3 | 0.13 | 80.5 |
GAN+自注意力+识别网络 (高层损失) | 0.69 | 22.5 | 0.12 | 85.5 |
GAN+自注意力+识别网络 (中低层损失) | 0.71 | 22.8 | 0.08 | 85.3 |
GAN+自注意力+识别网络 (高层&中低层损失) | 0.89 | 23.5 | 0.06 | 87.1 |
Tab. 1 Ablation experimental results of multi?granularity feature fusion based generative adversarial network on MLR?CUHK03 dataset
方法 | MLR‑CUHK03 | |||
---|---|---|---|---|
SSIM | PSNR/dB | LPIPS | rank‑1/% | |
GAN | 0.30 | 13.9 | 0.42 | 47.8 |
GAN+自注意力 | 0.61 | 19.2 | 0.19 | 65.3 |
GAN+识别网络(高层损失) | 0.41 | 18.1 | 0.23 | 76.9 |
GAN+识别网络(中低层损失) | 0.57 | 20.9 | 0.16 | 78.1 |
GAN+识别网络 (高层&中低层损失) | 0.61 | 21.3 | 0.13 | 80.5 |
GAN+自注意力+识别网络 (高层损失) | 0.69 | 22.5 | 0.12 | 85.5 |
GAN+自注意力+识别网络 (中低层损失) | 0.71 | 22.8 | 0.08 | 85.3 |
GAN+自注意力+识别网络 (高层&中低层损失) | 0.89 | 23.5 | 0.06 | 87.1 |
方法 | MLR‑Market1501 | MLR‑CUHK03 | MLR‑VIPeR | MLR‑DukeMTMC‑reID | CAVIAR | |||||
---|---|---|---|---|---|---|---|---|---|---|
rank‑1 | rank‑5 | rank‑1 | rank‑5 | rank‑1 | rank‑5 | rank‑1 | rank‑5 | rank‑1 | rank‑5 | |
CamStyle | 74.5 | 88.6 | 69.1 | 89.6 | 34.4 | 56.8 | 64.0 | 78.1 | 32.1 | 72.3 |
FD‑GAN | 79.6 | 91.6 | 73.4 | 92.8 | 39.1 | 62.1 | 67.5 | 82.0 | 33.5 | 71.4 |
SLD2L | ― | ― | ― | ― | 20.3 | 44.0 | ― | ― | 18.4 | 44.8 |
SING | 74.4 | 87.8 | 67.7 | 90.7 | 33.5 | 57.0 | 65.2 | 80.1 | 33.5 | 72.7 |
CSR‑GAN | 76.4 | 88.5 | 71.3 | 92.1 | 37.2 | 62.3 | 67.6 | 81.4 | 34.7 | 72.5 |
JUDEA | ― | ― | 26.2 | 58.0 | 26.0 | 55.1 | ― | ― | 22.0 | 60.1 |
SDF | ― | ― | 22.2 | 48.0 | 9.3 | 38.1 | ― | ― | 14.3 | 37.5 |
RAIN | ― | ― | 78.9 | 97.3 | 42.5 | 68.3 | ― | ― | 42.0 | 77.3 |
CAD | 83.7 | 92.7 | 82.1 | 97.4 | 43.1 | 68.2 | 75.6 | 86.7 | 42.8 | 76.2 |
INTACT | 88.1 | 95.0 | 86.4 | 97.4 | 46.2 | 73.1 | 81.2 | 90.1 | 44.0 | 81.8 |
本文方法 | 88.9 | 96.3 | 87.1 | 97.5 | 46.9 | 73.6 | 82.1 | 91.8 | 44.9 | 83.2 |
Tab. 2 Rank?1 and rank?5 accuracies on CMC of proposed method and existing similar methods on different datasets
方法 | MLR‑Market1501 | MLR‑CUHK03 | MLR‑VIPeR | MLR‑DukeMTMC‑reID | CAVIAR | |||||
---|---|---|---|---|---|---|---|---|---|---|
rank‑1 | rank‑5 | rank‑1 | rank‑5 | rank‑1 | rank‑5 | rank‑1 | rank‑5 | rank‑1 | rank‑5 | |
CamStyle | 74.5 | 88.6 | 69.1 | 89.6 | 34.4 | 56.8 | 64.0 | 78.1 | 32.1 | 72.3 |
FD‑GAN | 79.6 | 91.6 | 73.4 | 92.8 | 39.1 | 62.1 | 67.5 | 82.0 | 33.5 | 71.4 |
SLD2L | ― | ― | ― | ― | 20.3 | 44.0 | ― | ― | 18.4 | 44.8 |
SING | 74.4 | 87.8 | 67.7 | 90.7 | 33.5 | 57.0 | 65.2 | 80.1 | 33.5 | 72.7 |
CSR‑GAN | 76.4 | 88.5 | 71.3 | 92.1 | 37.2 | 62.3 | 67.6 | 81.4 | 34.7 | 72.5 |
JUDEA | ― | ― | 26.2 | 58.0 | 26.0 | 55.1 | ― | ― | 22.0 | 60.1 |
SDF | ― | ― | 22.2 | 48.0 | 9.3 | 38.1 | ― | ― | 14.3 | 37.5 |
RAIN | ― | ― | 78.9 | 97.3 | 42.5 | 68.3 | ― | ― | 42.0 | 77.3 |
CAD | 83.7 | 92.7 | 82.1 | 97.4 | 43.1 | 68.2 | 75.6 | 86.7 | 42.8 | 76.2 |
INTACT | 88.1 | 95.0 | 86.4 | 97.4 | 46.2 | 73.1 | 81.2 | 90.1 | 44.0 | 81.8 |
本文方法 | 88.9 | 96.3 | 87.1 | 97.5 | 46.9 | 73.6 | 82.1 | 91.8 | 44.9 | 83.2 |
1 | 魏文钰,杨文忠,马国祥,等. 基于深度学习的行人再识别技术研究综述[J]. 计算机应用, 2020, 40(9):2479-2492. 10.11772/j.issn.1001-9081.2020010038 |
WEI W Y, YANG W Z, MA G X, et al. Survey of person re‑identification technology based on deep learning[J]. Journal of Computer Applications, 2020, 40(9):2479-2492. 10.11772/j.issn.1001-9081.2020010038 | |
2 | CHANG X B, HOSPEDALES T M, XIANG T. Multi‑level factorisation net for person re‑identification[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2109-2118. 10.1109/cvpr.2018.00225 |
3 | CHEN D P, XU D, LI H S, et al. Group consistent similarity learning via deep CRF for person re‑identification[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8649-8658. 10.1109/cvpr.2018.00902 |
4 | FARENZENA M, BAZZANI L, PERINA A, et al. Person re‑identification by symmetry‑driven accumulation of local features[C]// Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010:2360-2367. 10.1109/cvpr.2010.5539926 |
5 | CHEN Y C, LI Y J, DU X F, et al. Learning resolution‑invariant deep representations for person re‑identification[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019:8215-8222. 10.1609/aaai.v33i01.33018215 |
6 | LI X, ZHENG W S, WANG X J, et al. Multi‑scale learning for low‑resolution person re‑identification[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 3765‑3773. 10.1109/iccv.2015.429 |
7 | JING X Y, ZHU X K, WU F, et al. Super‑resolution person re‑identification with semi‑coupled low‑rank discriminant dictionary learning[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 695-704. 10.1109/cvpr.2015.7298669 |
8 | 胡雪影,郭海儒,朱蓉. 基于混合深度卷积网络的图像超分辨率重建[J]. 计算机应用, 2020, 40(7): 2069-2076. 10.11772/j.issn.1001-9081.2019122149 |
HU X Y, GUO H R, ZHU R. Image super‑resolution reconstruction based on hybrid deep convolutional network[J]. Journal of Computer Applications, 2020, 40(7):2069-2076. 10.11772/j.issn.1001-9081.2019122149 | |
9 | WANG S L, ZHANG L, LIANG Y, et al. Semi‑coupled dictionary learning with applications to image super‑resolution and photo‑sketch synthesis[C]// Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2216-2223. 10.1109/cvpr.2012.6247930 |
10 | DONG C, LOY C C, HE K M, et al. Image super‑resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2):295-307. 10.1109/tpami.2015.2439281 |
11 | LEDIG C, THEIS L, HUSZÁR F, et al. Photo‑realistic single image super‑resolution using a generative adversarial network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114. 10.1109/cvpr.2017.19 |
12 | 欧阳宁,梁婷,林乐平. 基于自注意力网络的图像超分辨率重建[J]. 计算机应用, 2019, 39(8):2391-2395. 10.11772/j.issn.1001-9081.2019010158 |
OUYANG N, LIANG T, LIN L P. Self‑attention network based image super‑resolution[J]. Journal of Computer Applications, 2019, 39(8):2391-2395. 10.11772/j.issn.1001-9081.2019010158 | |
13 | 焦云清,王世新,周艺,等.基于神经网络的遥感影像超高分辨率目标识别[J].系统仿真学报,2007,19(14):3223-3225. 10.3969/j.issn.1004-731X.2007.14.025 |
JIAO Y Q, WANG S X, ZHOU Y, et al. Super‑resolution target identification from remotely sensed imagery using Hopfield Neural Network[J]. Journal of System Simulation, 2007, 19(14):3223-3225. 10.3969/j.issn.1004-731X.2007.14.025 | |
14 | 潘志庚,郑星,张明敏. 多分辨率模型生成中颜色和纹理属性的处理[J]. 系统仿真学报, 2002, 14(11):1506-1508, 1530. 10.3969/j.issn.1004-731X.2002.11.027 |
PAN Z G, ZHENG X, ZHANG M M. Processing of color and texture attributes in multi‑resolution modeling[J]. Journal of System Simulation, 2002, 14(11):1506-1508, 1530. 10.3969/j.issn.1004-731X.2002.11.027 | |
15 | 陈佛计,朱枫,吴清潇,等. 生成对抗网络及其在图像生成中的应用研究综述[J]. 计算机学报, 2021, 44(2):347-369. 10.11897/SP.J.1016.2021.00347 |
CHEN F J, ZHU F, WU Q X, et al. A survey about image generation with generative adversarial nets[J]. Chinese Journal of Computers, 2021, 44(2):347-369. 10.11897/SP.J.1016.2021.00347 | |
16 | HAN K, HUANG Y, SONG C F, et al. Adaptive super‑resolution for person re‑identification with low‑resolution images[J]. Pattern Recognition, 2021, 114: No.107682. 10.1016/j.patcog.2020.107682 |
17 | JIAO J N, ZHENG W S, WU A C, et al. Deep low‑resolution person re‑identification[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018:6967-6974. 10.1609/aaai.v32i1.12284 |
18 | WANG Z, YE M, YANG F, et al. Cascaded SR‑GAN for scale‑ adaptive low resolution person re‑identification[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018: 3891-3897. 10.24963/ijcai.2018/541 |
19 | LI Y J, CHEN Y C, LIN Y Y, et al. Recover and identify: a generative dual model for cross‑resolution person re‑identification[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8089-8098. 10.1109/iccv.2019.00818 |
20 | CHENG Z Y, DONG Q, GONG S G, et al. Inter‑task association critic for cross‑resolution person re‑identification[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 2602-2612. 10.1109/cvpr42600.2020.00268 |
21 | 丁明航,邓然然,邵恒. 基于注意力生成对抗网络的图像超分辨率重建方法[J]. 计算机系统应用, 2020, 29(2):209-211. |
DING M H, DENG R R, SHAO H. Image super‑resolution reconstruction method based on attentive generative adversarial network[J]. Computer Systems and Applications, 2020, 29(2):209-211. | |
22 | 许一宁,何小海,张津,等. 基于多层次分辨率递进生成对抗网络的文本生成图像方法[J]. 计算机应用, 2020, 40(12):3612-3617. 10.11772/j.issn.1001-9081.2020040575 |
XU Y N, HE X H, ZHANG J, et al. Text‑to‑image synthesis method based on multi‑level progressive resolution generative adversarial networks[J]. Journal of Computer Applications, 2020, 40(12):3612-3617. 10.11772/j.issn.1001-9081.2020040575 | |
23 | 王雪松,晁杰,程玉虎. 基于自注意力生成对抗网络的图像超分辨率重建[J]. 控制与决策, 2021, 36(6):1324-1332. 10.13195/j.kzyjc.2019.1290 |
WANG X S, CHAO J, CHENG Y H. Image super‑resolution reconstruction based on self‑attention GAN[J]. Control and Decision, 2021, 36(6):1324-1332. 10.13195/j.kzyjc.2019.1290 | |
24 | 杨婉香,严严,陈思,等. 基于多尺度生成对抗网络的遮挡行人重识别方法[J]. 软件学报, 2020, 31(7):1943-1958. |
YANG W X, YAN Y, CHEN S, et al. Multi‑scale generative adversarial network for person re‑identification under occlusion[J]. Journal of Software, 2020, 31(7):1943-1958. | |
25 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large‑scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009:248-255. 10.1109/cvpr.2009.5206848 |
26 | GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 5769-5779. |
27 | LI W, ZHU X T, GONG S G. Person re‑identification by deep joint learning of multi‑loss classification[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2017: 2194-2200. 10.24963/ijcai.2017/305 |
28 | YUAN Y, CHEN W Y, YANG Y, et al. In defense of the triplet loss again: learning robust person re‑identification with fast approximated triplet loss and label distillation[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 1454-1463. 10.1109/cvprw50498.2020.00185 |
29 | ZHONG Z, ZHENG L, ZHENG Z D, et al. Camera style adaptation for person re‑identification[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5157-5166. 10.1109/cvpr.2018.00541 |
30 | GE Y X, LI Z W, ZHAO H Y, et al. FD‑GAN: pose‑guided feature distilling GAN for robust person re‑identification[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2018: 1230-1241. |
31 | WANG Z, HU R M, YU Y, et al. Scale‑adaptive low‑resolution person re‑identification via learning a discriminating surface[C]// Proceedings of the 25th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2016: 2669-2675. |
32 | SUN Y F, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11208. Cham: Springer, 2018: 501-518. |
[1] | Zanxia QIANG, Xianfu BAO. Residual attention deraining network based on convolutional long short-term memory [J]. Journal of Computer Applications, 2022, 42(9): 2858-2864. |
[2] | Zefang HAN, Xiong ZHANG, Hong SHANGGUAN, Xinglong HAN, Jing HAN, Gang FENG, Xueying CUI. Artifacts sensing generative adversarial network for low-dose CT denoising [J]. Journal of Computer Applications, 2022, 42(7): 2301-2310. |
[3] | Wentao MAO, Guifang WU, Chao WU, Zhi DOU. Animation video generation model based on Chinese impressionistic style transfer [J]. Journal of Computer Applications, 2022, 42(7): 2162-2169. |
[4] | Jia LI, Yuanlin ZHENG, Kaiyang LIAO, Haojie LOU, Shiyu LI, Zehao CHEN. No-reference image quality assessment algorithm based on saliency deep features [J]. Journal of Computer Applications, 2022, 42(6): 1957-1964. |
[5] | Yuming ZHAO, Shenkai GU. Adversarial attack defense model with residual dense block self-attention mechanism and generative adversarial network [J]. Journal of Computer Applications, 2022, 42(3): 921-929. |
[6] | Yimin CAO, Lei CAI, Jingyang GAO. Gene data generation method based on generative adversarial network [J]. Journal of Computer Applications, 2022, 42(3): 783-790. |
[7] | Dingkang YANG, Shuai HUANG, Shunli WANG, Peng ZHAI, Yidan LI, Lihua ZHANG. EE-GAN:facial expression recognition method based on generative adversarial network and network integration [J]. Journal of Computer Applications, 2022, 42(3): 750-756. |
[8] | Yuli CHEN, Qiang TONG, Tongtong CHEN, Shoulu HOU, Xiulei LIU. Short-term trajectory prediction model of aircraft based on attention mechanism and generative adversarial network [J]. Journal of Computer Applications, 2022, 42(10): 3292-3299. |
[9] | GUAN Qijie, ZHANG Ting, LI Deya, ZHOU Shaojing, DU Yi. Indefinite reconstruction method of spatial data based on multi-resolution generative adversarial network [J]. Journal of Computer Applications, 2021, 41(8): 2306-2311. |
[10] | SUN Xiao, XU Jindong. Remote sensing image dehazing method based on cascaded generative adversarial network [J]. Journal of Computer Applications, 2021, 41(8): 2440-2444. |
[11] | TANG Guihua, SUN Lei, MAO Xiuqing, DAI Leyu, HU Yongjin. Generative adversarial network synthesized face detection based on deep alignment network [J]. Journal of Computer Applications, 2021, 41(7): 1922-1927. |
[12] | WANG Xianwu, ZHANG Ting, JI Xin, DU Yi. 3D shale digital core reconstruction method based on deep convolutional generative adversarial network with gradient penalty [J]. Journal of Computer Applications, 2021, 41(6): 1805-1811. |
[13] | LI Yanzhi, FAN Yong, GAO Lin. Anomaly detection of oil drilling water flow based on shape flow [J]. Journal of Computer Applications, 2021, 41(6): 1842-1848. |
[14] | SUN Heli, SUN Yuzhu, ZHANG Xiaoyun. Event description generation based on generative adversarial network [J]. Journal of Computer Applications, 2021, 41(5): 1256-1261. |
[15] | GUO Maozu, YANG Qiannan, ZHAO Lingling. Image generation based on conditional-Wassertein generative adversarial network [J]. Journal of Computer Applications, 2021, 41(5): 1432-1437. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||