Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (4): 1115-1121.DOI: 10.11772/j.issn.1001-9081.2022020279
Special Issue: 数据科学与技术
• Data science and technology • Previous Articles Next Articles
Caiqian BAO1, Jianmin XU1(), Guofang ZHANG2
Received:
2022-03-11
Revised:
2022-05-24
Accepted:
2022-05-26
Online:
2022-08-16
Published:
2023-04-10
Contact:
Jianmin XU
About author:
BAO Caiqian, born in 1999, M. S. candidate. Her research interests include online social network.Supported by:
通讯作者:
徐建民
作者简介:
鲍彩倩(1999—),女,河北石家庄人,硕士研究生,CCF会员,主要研究方向:在线社交网络;基金资助:
CLC Number:
Caiqian BAO, Jianmin XU, Guofang ZHANG. Extended belief network recommendation model based on user dynamic interaction behavior[J]. Journal of Computer Applications, 2023, 43(4): 1115-1121.
鲍彩倩, 徐建民, 张国防. 基于用户动态交互行为扩展的信念网络推荐模型[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1115-1121.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022020279
用户 | 静态交互强度 | 动态交互强度 |
---|---|---|
ID:1684838781 | 0.287 4 | 0.269 1 |
ID:1964364687 | 0.186 9 | 0.127 6 |
ID:1942778191 | 0.159 6 | 0.152 3 |
ID:2011820832 | 0.105 4 | 0.134 6 |
ID:2123070243 | 0.018 5 | 0.007 4 |
Tab. 1 Interaction strength
用户 | 静态交互强度 | 动态交互强度 |
---|---|---|
ID:1684838781 | 0.287 4 | 0.269 1 |
ID:1964364687 | 0.186 9 | 0.127 6 |
ID:1942778191 | 0.159 6 | 0.152 3 |
ID:2011820832 | 0.105 4 | 0.134 6 |
ID:2123070243 | 0.018 5 | 0.007 4 |
信息交互行为 | 信息交互行为 | ||
---|---|---|---|
转发 | 评论 | 点赞 | |
转发 | 1 | 2 | 3 |
评论 | 1/2 | 1 | 2 |
点赞 | 1/3 | 1/2 | 1 |
Tab. 2 Decision matrix
信息交互行为 | 信息交互行为 | ||
---|---|---|---|
转发 | 评论 | 点赞 | |
转发 | 1 | 2 | 3 |
评论 | 1/2 | 1 | 2 |
点赞 | 1/3 | 1/2 | 1 |
模型 | 准确率 | 召回率 | F1值 | MRR |
---|---|---|---|---|
BNR | 0.63 | 0.47 | 0.54 | 0.42 |
EBNR_UDIB-AND | 0.80 | 0.54 | 0.64 | 0.44 |
EBNR_UDIB-OR | 0.75 | 0.58 | 0.65 | 0.43 |
Tab. 3 Performance comparison between basic modal and extended models
模型 | 准确率 | 召回率 | F1值 | MRR |
---|---|---|---|---|
BNR | 0.63 | 0.47 | 0.54 | 0.42 |
EBNR_UDIB-AND | 0.80 | 0.54 | 0.64 | 0.44 |
EBNR_UDIB-OR | 0.75 | 0.58 | 0.65 | 0.43 |
模型 | 准确率 | 召回率 | F1值 | 多样性 | 新颖性 |
---|---|---|---|---|---|
EBNR_UDIB-AND | 0.80 | 0.54 | 0.64 | 0.80 | 0.91 |
EBNR_UDIB-OR | 0.75 | 0.58 | 0.65 | 0.95 | 0.96 |
SBRM | 0.73 | 0.50 | 0.59 | 0.80 | 0.90 |
CBRM | 0.69 | 0.43 | 0.53 | 0.74 | 0.86 |
Tab. 4 Performance comparison between the proposed model and SBRM, CBRM
模型 | 准确率 | 召回率 | F1值 | 多样性 | 新颖性 |
---|---|---|---|---|---|
EBNR_UDIB-AND | 0.80 | 0.54 | 0.64 | 0.80 | 0.91 |
EBNR_UDIB-OR | 0.75 | 0.58 | 0.65 | 0.95 | 0.96 |
SBRM | 0.73 | 0.50 | 0.59 | 0.80 | 0.90 |
CBRM | 0.69 | 0.43 | 0.53 | 0.74 | 0.86 |
模型 | 运行时间 |
---|---|
CBRM | 1 938 |
SBRM | 1 988 |
EBNR_UDIB-AND | 1 724 |
EBNR_UDIB-OR | 2 045 |
Tab. 5 Comparison of runtime between different models
模型 | 运行时间 |
---|---|
CBRM | 1 938 |
SBRM | 1 988 |
EBNR_UDIB-AND | 1 724 |
EBNR_UDIB-OR | 2 045 |
1 | 朱思淼,魏世伟,魏思恒,等. 基于弹幕情感分析和主题模型的视频推荐算法[J]. 计算机应用, 2021, 41(10):2813-2819. 10.11772/j.issn.1001-9081.2020121997 |
ZHU S M, WEI S W, WEI S H, et al. Video recommendation algorithm based on danmaku sentiment analysis and topic model[J]. Journal of Computer Applications, 2021, 41(10): 2813-2819. 10.11772/j.issn.1001-9081.2020121997 | |
2 | LI A C, YANG B, HUSSAIN F K, et al. HSR: hyperbolic social recommender[J]. Information Sciences, 2022, 585: 275-288. 10.1016/j.ins.2021.11.040 |
3 | BELCASTRO L, CANTINI R, MAROZZO F. Knowledge discovery from large amounts of social media data[J]. Applied Sciences, 2022, 12(3): No.1209. 10.3390/app12031209 |
4 | 张玉洁,董政,孟祥武. 个性化广告推荐系统及其应用研究[J]. 计算机学报, 2021, 44(3):531-563. 10.11897/SP.J.1016.2021.00531 |
ZHANG Y J, DONG Z, MENG X W. Research on personalized advertising recommendation systems and their applications[J]. Chinese Journal of Computers, 2021, 44(3): 531-563. 10.11897/SP.J.1016.2021.00531 | |
5 | 王战平,夏榕. 基于社会化标签挖掘的微博内容推荐方法研究[J]. 情报科学, 2021, 39(5):91-96. 10.13833/j.issn.1007-7634.2021.05.013 |
WANG Z P, XIA R. Micro-blog content recommendation method based on social tag mining[J]. Information Science, 2021, 39(5): 91-96. 10.13833/j.issn.1007-7634.2021.05.013 | |
6 | 马慧芳,张迪,赵卫中,等. 基于超图随机游走标签扩充的微博推荐方法[J]. 软件学报, 2019, 30(11):3397-3412. |
MA H F, ZHANG D, ZHAO W Z, et al. Microblog recommendation method based on hypergraph random walk tag extension[J]. Journal of Software, 2019, 30(11): 3397-3412. | |
7 | WANG Y R, DING S F, XU X, et al. The multi-tag semantic correlation used for micro-blog user interest modeling[J]. Engineering Applications of Artificial Intelligence, 2019, 85:765-772. 10.1016/j.engappai.2019.08.007 |
8 | 杨辰,刘婷婷,刘雷,等. 融合语义和社交特征的电子文献资源推荐方法研究[J]. 情报学报, 2019, 38(6):632-640. 10.3772/j.issn.1000-0135.2019.06.008 |
YANG C, LIU T T, LIU L, et al. A novel recommendation approach of electronic literature resources combining semantic and social features[J]. Journal of the China Society for Scientific and Technical Information, 2019, 38(6): 632-640. 10.3772/j.issn.1000-0135.2019.06.008 | |
9 | 周寅莹,章梦怡,余敦辉,等. 融合信任隐含相似度与评分相似度的社会化推荐[J]. 计算机应用, 2022, 42(12):3671-3678. 10.11772/j.issn.1001-9081.2021101782 |
ZHOU Y Y, ZHANG M Y, YU D H, et al. Social recommendation combining trust implicit similarity and score similarity[J]. Journal of Computer Applications, 2022, 42(12):3671-3678. 10.11772/j.issn.1001-9081.2021101782 | |
10 | 徐建民,申永平,吴树芳. 基于分层社交关系的微博推荐算法[J]. 计算机应用研究, 2021, 38(12):3597-3603, 3610. 10.19734/j.issn.1001-3695.2021.06.0220 |
XU J M, SHEN Y P, WU S F. Algorithm of micro-blog recommendation based on hierarchical social relationships[J]. Application Research of Computers, 2021, 38(12): 3597-3603, 3610. 10.19734/j.issn.1001-3695.2021.06.0220 | |
11 | 邵超,宋淑米. 基于信任关系下用户兴趣偏好的协同过滤推荐算法[J]. 计算机科学, 2021, 48(6A):240-245. 10.11896/jsjkx.200700113 |
SHAO C, SONG S M. Collaborative filtering recommendation algorithm based on user preference under trust relationship[J]. Computer Science, 2021, 48 (6A): 240-245. 10.11896/jsjkx.200700113 | |
12 | BATHLA G, AGGARWAL H, RANI R. A graph-based model to improve social trust and influence for social recommendation[J]. The Journal of Supercomputing, 2020, 76(6): 4057-4075. 10.1007/s11227-017-2196-2 |
13 | BAO F G, XU W Q, FENG Y, et al. A topic-rank recommendation model based on microblog topic relevance & user preference analysis[J]. Human-centric Computing and Information Sciences, 2022, 12: No.10. |
14 | RIBEIRO B A N, MUNTZ R. A belief network model for IR[C]// Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 1996: 253-260. 10.1145/243199.243272 |
15 | DE CRISTO M A P, CALADO P P, DE LOURDES DA SILVEIRA M, et al. Bayesian belief networks for IR[J]. International Journal of Approximate Reasoning, 2003, 34(2/3): 163-179. 10.1016/j.ijar.2003.07.006 |
16 | 徐建民. 基于术语关系的贝叶斯网络检索模型扩展[M]. 北京:科学出版社, 2019:93-111. |
XU J M. Extension of Bayesian Network Retrieval Model based on Term Relation[M]. Beijing: Science Press, 2019: 93-111. | |
17 | 徐建民,何丹丹,吴树芳. 基于文档关系的扩展信念网络检索模型[J]. 情报学报, 2019, 38(11):1160-1165. 10.3772/j.issn.1000-0135.2019.11.004 |
XU J M, HE D D, WU S F. An extended belief network retrieval model based on document relationships[J]. Journal of the China Society for Scientific and Technical Information, 2019, 38(11): 1160-1165. 10.3772/j.issn.1000-0135.2019.11.004 | |
18 | HUANG J J, ZHU K L, ZHONG N. A probabilistic inference model for recommender systems[J]. Applied Intelligence, 2016, 45(3): 686-694. 10.1007/s10489-016-0783-1 |
19 | 朱昆磊,黄佳进. 基于信念网络的协同过滤图模型的推荐算法[J]. 模式识别与人工智能, 2016, 29(2):171-176. 10.16451/j.cnki.issn1003-6059.201602009 |
ZHU K L, HUANG J J. Recommendation algorithm of collaborative filtering graph model based on belief network[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(2): 171-176. 10.16451/j.cnki.issn1003-6059.201602009 | |
20 | XIE X Q, LI J H, SHENG Y, et al. Competitive influence maximization considering inactive nodes and community homophily[J]. Knowledge-Based Systems, 2021, 233: No.107497. 10.1016/j.knosys.2021.107497 |
21 | 汤小月,周康,王凯. 一种空间上下文感知的提及目标推荐方法[J]. 软件学报, 2020, 31(4):1189-1211. |
TANG X Y, ZHOU K, WANG K. Spatial context-aware mention target recommendation method[J]. Journal of Software, 2020, 31(4): 1189-1211. | |
22 | 刘春,张国良. 一种基于重叠社区发现的软件特征提取方法[J]. 计算机科学, 2019, 46(12):201-207. 10.11896/jsjkx.181001856 |
LIU C, ZHANG G L. Software feature extraction method based on overlapping community detection[J]. Computer Science, 2019, 46(12): 201-207. 10.11896/jsjkx.181001856 | |
23 | 高慧颖,魏甜,刘嘉唯. 基于用户聚类与动态交互信任关系的好友推荐方法研究[J]. 数据分析与知识发现, 2019, 3(10):66-77. |
GAO H Y, WEI T, LIU J W. Friend recommendation based on user clustering and dynamic interaction trust relationship[J]. Data Analysis and Knowledge Discovery, 2019, 3(10): 66-77. | |
24 | DOKE A B, ZOLEKAR R B, PATEL H, et al. Geospatial mapping of groundwater potential zones using multi-criteria decision-making AHP approach in a hardrock basaltic terrain in India[J]. Ecological Indicators, 2021, 127: No.107685. 10.1016/j.ecolind.2021.107685 |
[1] | Huanliang SUN, Siyi WANG, Junling LIU, Jingke XU. Help-seeking information extraction model for flood event in social media data [J]. Journal of Computer Applications, 2024, 44(8): 2437-2445. |
[2] | Junhua GU, Shuai FAN, Ningning LI, Suqi ZHANG. Long- and short-term recommendation model and updating method based on knowledge graph preference attention network [J]. Journal of Computer Applications, 2022, 42(4): 1079-1086. |
[3] | Rui XIAO, Mingyi LIU, Zhiying TU, Zhongjie WANG. Personal event detection method based on text mining in social media [J]. Journal of Computer Applications, 2022, 42(11): 3513-3519. |
[4] | ZHANG Yang, DONG Shicheng. Intelligent recommendation method for lock mechanism in concurrent program [J]. Journal of Computer Applications, 2021, 41(6): 1597-1603. |
[5] | MENG Xiangrui, YANG Wenzhong, WANG Ting. Survey of sentiment analysis based on image and text fusion [J]. Journal of Computer Applications, 2021, 41(2): 307-317. |
[6] | Junwei REN, Cheng ZENG, Siyu XIAO, Jinxia QIAO, Peng HE. Session-based recommendation model of multi-granular graph neural network [J]. Journal of Computer Applications, 2021, 41(11): 3164-3170. |
[7] | GUO Kexin, ZHANG Yuxiang. Visual-textual sentiment analysis method based on multi-level spatial attention [J]. Journal of Computer Applications, 2021, 41(10): 2835-2841. |
[8] | LI Shanshan, YANG Wenzhong, WANG Ting, WANG Lihua. Survey of sub-topic detection technology based on internet social media [J]. Journal of Computer Applications, 2020, 40(6): 1565-1573. |
[9] | CAI Guoyong, HE Xinhao, CHU Yangyang. Visual sentiment analysis by combining global and local regions of image [J]. Journal of Computer Applications, 2019, 39(8): 2181-2185. |
[10] | XIANG Jinyong, YANG Wenzhong, SILAMU·Wushouer. Text sentiment classification algorithm based on feature selection and deep belief network [J]. Journal of Computer Applications, 2019, 39(7): 1942-1947. |
[11] | ZHOU Xiangyu, CHENG Yong, WANG Jun. Agricultural greenhouse temperature prediction method based on improved deep belief network [J]. Journal of Computer Applications, 2019, 39(4): 1053-1058. |
[12] | SHEN Xueli, QIN Shujuan. Anomaly detection based on synthetic minority oversampling technique and deep belief network [J]. Journal of Computer Applications, 2018, 38(7): 1941-1945. |
[13] | LI Fang, ZHANG Ting. Deep belief network-based matching algorithm for abnormal point sets [J]. Journal of Computer Applications, 2018, 38(12): 3570-3573. |
[14] | YANG Jian, ZHOU Tao, GUO Lifang, ZHANG Feifei, LIANG Mengmeng. Lung tumor image recognition algorithm based on cuckoo search and deep belief network [J]. Journal of Computer Applications, 2018, 38(11): 3225-3230. |
[15] | QIU Meng, YIN Haoyu, CHEN Qiang, LIU Yingjian. Automatic cloud detection algorithm based on deep belief network-Otsu hybrid model [J]. Journal of Computer Applications, 2018, 38(11): 3175-3179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||