Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (4): 1284-1290.DOI: 10.11772/j.issn.1001-9081.2022030410
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Juming HAO1, Jingyu YANG2(), Shumei HAN2, Yangping WANG2
Received:
2022-04-02
Revised:
2022-06-23
Accepted:
2022-07-12
Online:
2023-01-11
Published:
2023-04-10
Contact:
Jingyu YANG
About author:
HAO Juming, born in 1973, senior engineer. His research interests include intelligent transportation.Supported by:
通讯作者:
杨景玉
作者简介:
郝巨鸣(1973—),男,甘肃陇南人,高级工程师,主要研究方向:智慧交通;基金资助:
CLC Number:
Juming HAO, Jingyu YANG, Shumei HAN, Yangping WANG. YOLOv4 highway pavement crack detection method using Ghost module and ECA[J]. Journal of Computer Applications, 2023, 43(4): 1284-1290.
郝巨鸣, 杨景玉, 韩淑梅, 王阳萍. 引入Ghost模块和ECA的YOLOv4公路路面裂缝检测方法[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1284-1290.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022030410
特征图 | 操作 | 输入 | 输出 | 核 | SE | Stride |
---|---|---|---|---|---|---|
76×76×27 | Conv2D | (608,608,3) | (304,304,16) | (3,3) | 2 | |
GhostBN1 | (304,304,16) | (304,304,16) | (3,3) | × | 1 | |
GhostBN2 | (304,304,16) | (304,304,16) | (3,3) | × | 1 | |
(304,304,16) | (152,152,24) | (3,3) | × | 2 | ||
GhostBN2 | (152,152,24) | (76,76,40) | (5,5) | √ | 2 | |
(76,76,40) | (76,76,40) | (5,5) | √ | 1 | ||
38×38×27 | GhostBN4 | (76,76,40) | (38,38,80) | (3,3) | × | 1 |
(38,38,80) | (38,38,80) | (3,3) | × | 1 | ||
(38,38,80) | (38,38,80) | (3,3) | × | 1 | ||
(38,38,80) | (38,38,80) | (3,3) | × | 1 | ||
GhostBN2 | (38,38,80) | (38,38,112) | (3,3) | √ | 1 | |
(38,38,112) | (38,38,112) | (3,3) | √ | 1 | ||
19×19×27 | GhostBN5 | (38,38,112) | (19,19,160) | (5,5) | √ | 2 |
(19,19,160) | (19,19,160) | (5,5) | × | 1 | ||
(19,19,160) | (19,19,160) | (5,5) | √ | 1 | ||
(19,19,160) | (19,19,160) | (5,5) | × | 1 | ||
(19,19,160) | (19,19,160) | (5,5) | √ | 1 |
Tab. 1 GhostNet parameters
特征图 | 操作 | 输入 | 输出 | 核 | SE | Stride |
---|---|---|---|---|---|---|
76×76×27 | Conv2D | (608,608,3) | (304,304,16) | (3,3) | 2 | |
GhostBN1 | (304,304,16) | (304,304,16) | (3,3) | × | 1 | |
GhostBN2 | (304,304,16) | (304,304,16) | (3,3) | × | 1 | |
(304,304,16) | (152,152,24) | (3,3) | × | 2 | ||
GhostBN2 | (152,152,24) | (76,76,40) | (5,5) | √ | 2 | |
(76,76,40) | (76,76,40) | (5,5) | √ | 1 | ||
38×38×27 | GhostBN4 | (76,76,40) | (38,38,80) | (3,3) | × | 1 |
(38,38,80) | (38,38,80) | (3,3) | × | 1 | ||
(38,38,80) | (38,38,80) | (3,3) | × | 1 | ||
(38,38,80) | (38,38,80) | (3,3) | × | 1 | ||
GhostBN2 | (38,38,80) | (38,38,112) | (3,3) | √ | 1 | |
(38,38,112) | (38,38,112) | (3,3) | √ | 1 | ||
19×19×27 | GhostBN5 | (38,38,112) | (19,19,160) | (5,5) | √ | 2 |
(19,19,160) | (19,19,160) | (5,5) | × | 1 | ||
(19,19,160) | (19,19,160) | (5,5) | √ | 1 | ||
(19,19,160) | (19,19,160) | (5,5) | × | 1 | ||
(19,19,160) | (19,19,160) | (5,5) | √ | 1 |
实验 | GhostNet | ECA | mAP/% | 模型大小/MB | 参数量/106 |
---|---|---|---|---|---|
1 | 58.17 | 250.93 | 64.12 | ||
2 | √ | 48.39 | 44.38 | 11.09 | |
3 | √ | 60.35 | 250.50 | 64.19 | |
4 | √ | √ | 56.34 | 44.40 | 11.18 |
Tab. 2 Comparison of results of ablation experiments
实验 | GhostNet | ECA | mAP/% | 模型大小/MB | 参数量/106 |
---|---|---|---|---|---|
1 | 58.17 | 250.93 | 64.12 | ||
2 | √ | 48.39 | 44.38 | 11.09 | |
3 | √ | 60.35 | 250.50 | 64.19 | |
4 | √ | √ | 56.34 | 44.40 | 11.18 |
模型 | AP/% | mAP/% | 模型大小/MB | 参数量/106 | |||
---|---|---|---|---|---|---|---|
LC | TC | MC | RC | ||||
YOLOv3 | 56.33 | 54.61 | 38.45 | 54.74 | 54.74 | 241.26 | 61.60 |
改进YOLOv3[ | 58.19 | 56.27 | 40.16 | 55.97 | 52.65 | 247.39 | 63.54 |
YOLOv4-tiny | 46.26 | 43.18 | 35.24 | 45.69 | 42.59 | 23.37 | 58.92 |
改进的YOLOv4-tiny[ | 50.21 | 44.34 | 38.29 | 48.64 | 45.37 | 31.25 | 61.17 |
YOLOv4 | 60.21 | 56.37 | 43.26 | 58.17 | 58.17 | 250.93 | 64.12 |
本文模型 | 58.42 | 56.14 | 46.19 | 56.34 | 56.34 | 44.40 | 11.18 |
Tab. 3 Comparison results of detection indicators of different models
模型 | AP/% | mAP/% | 模型大小/MB | 参数量/106 | |||
---|---|---|---|---|---|---|---|
LC | TC | MC | RC | ||||
YOLOv3 | 56.33 | 54.61 | 38.45 | 54.74 | 54.74 | 241.26 | 61.60 |
改进YOLOv3[ | 58.19 | 56.27 | 40.16 | 55.97 | 52.65 | 247.39 | 63.54 |
YOLOv4-tiny | 46.26 | 43.18 | 35.24 | 45.69 | 42.59 | 23.37 | 58.92 |
改进的YOLOv4-tiny[ | 50.21 | 44.34 | 38.29 | 48.64 | 45.37 | 31.25 | 61.17 |
YOLOv4 | 60.21 | 56.37 | 43.26 | 58.17 | 58.17 | 250.93 | 64.12 |
本文模型 | 58.42 | 56.14 | 46.19 | 56.34 | 56.34 | 44.40 | 11.18 |
1 | 张广世,葛广英,朱荣华,等. 基于改进YOLOv3网络的齿轮缺陷检测[J]. 激光与光电子学进展, 2020, 57(12): No.121009. 10.3788/lop57.121009 |
ZHANG G S, GE G Y, ZHU R H,et al. Gear defect detection based on the improved YOLOv3 network[J]. Laser and Optoelectronics Progress, 2020, 57(12): No.121009. 10.3788/lop57.121009 | |
2 | NGUYEN H N, KAM T Y, CHENG P Y. An automatic approach for accurate edge detection of concrete crack utilizing 2D geometric features of crack[J]. Journal of Signal Processing Systems, 2014, 77(3): 221-240. 10.1007/s11265-013-0813-8 |
3 | CHEN W Y, WANG H F, LI H, et al. Real-time garbage object detection with data augmentation and feature fusion using SUAV low-altitude remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: No.6003005. 10.1109/lgrs.2021.3074415 |
4 | ZHANG Z Y, LIU Y P, LIU T C, et al. DAGN: a real-time UAV remote sensing image vehicle detection framework[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(11): 1884-1888. 10.1109/lgrs.2019.2956513 |
5 | WANG Y Y, SONG K C, LIU J, et al. RENet: rectangular convolution pyramid and edge enhancement network for salient object detection of pavement cracks[J]. Measurement, 2021, 170: No.108698. 10.1016/j.measurement.2020.108698 |
6 | LI B X, WANG K C P, ZHANG A, et al. Automatic classification of pavement crack using deep convolutional neural network[J]. International Journal of Pavement Engineering, 2020, 21(4): 457-463. 10.1080/10298436.2018.1485917 |
7 | CHA Y J, CHOI W, BÜYÜKÖZTÜRK O. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378. 10.1111/mice.12263 |
8 | 楼豪杰,郑元林,廖开阳,等. 基于Siamese-YOLOv4的印刷品缺陷目标检测[J]. 计算机应用, 2021, 41(11):3206-3212. 10.11772/j.issn.1001-9081.2020121958 |
LOU H J, ZHENG Y L, LIAO K Y, et al. Defect target detection for printed matter based on Siamese-YOLOv4[J]. Journal of Computer Applications, 2021, 41(11):3206-3212. 10.11772/j.issn.1001-9081.2020121958 | |
9 | 胡正平,张乐,李淑芳,等. 端对端SSD实时视频监控异常目标检测与定位算法[J]. 燕山大学学报, 2020, 44(5):493-501. 10.3969/j.issn.1007-791X.2020.05.010 |
HU Z P, ZHANG L, LI S F, et al. End-to-end SSD real-time video surveillance abnormal target detection and localization algorithm[J]. Journal of Yanshan University, 2020, 44(5):493-501. 10.3969/j.issn.1007-791X.2020.05.010 | |
10 | 蒋慧琴,王博霖,马岭,等. 一种双视图信息融合的乳腺肿块自动检测算法[J]. 郑州大学学报(理学版), 2020, 52(4):28-36. 10.13705/j.issn.1671-6841.2020234 |
JIANG H Q, WANG B L, MA L, et al. An automatic breast mass detection algorithm with dual-view information fusion[J]. Journal of Zhengzhou University (Natural Science Edition), 2020, 52(4):28-36. 10.13705/j.issn.1671-6841.2020234 | |
11 | 裴仪瑶,郭会明,张丹普,等. 基于定位不确定性的3D鲁棒目标检测方法[J]. 计算机应用, 2021, 41(10):2979-2984. |
PEI Y Y, GUO H M, ZHANG D P, et al. Robust 3D object detection method based on localization uncertainty[J]. Journal of Computer Applications, 2021, 41(10):2979-2984. | |
12 | 毛莺池,唐江红,王静,等. 基于Faster R-CNN的多任务增强裂缝图像检测方法[J]. 智能系统学报, 2021, 16(2):286-293. 10.11992/tis.201910004 |
MAO Y C, TANG J H, WANG J, et al. Multi-task enhanced dam crack image detection based on Faster R-CNN[J]. CAAI Transactions on Intelligent Systems, 2021, 16(2):286-293. 10.11992/tis.201910004 | |
13 | 孙朝云,裴莉莉,李伟,等. 基于改进Faster R-CNN的路面灌封裂缝检测方法[J]. 华南理工大学学报(自然科学版), 2020, 48(2):84-93. |
SUN Z Y, PEI L L, LI W, et al. Pavement sealed crack detection method based on improved Faster R-CNN[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(2):84-93. | |
14 | 罗晖,贾晨,李健. 基于改进YOLOv4的公路路面病害检测算法[J].激光与光电子学进展, 2021, 58(14): No.1410025. 10.3788/LOP202158.1410025 |
LUO H, JIA C, LI J, Road surface disease detection algorithm based on improved YOLOv4[J]. Laser and Optoelectronics Progress, 2021, 58(14): No.1410025. 10.3788/LOP202158.1410025 | |
15 | 王丹,李琦,梁栋,等. 基于多尺度全卷积与CRF的路面裂缝检测算法[J]. 燕山大学学报, 2021, 45(4):367-376. 10.3969/j.issn.1007-791X.2021.04.010 |
WANG D, LI Q, LIANG D, et al. Road crack detection algorithms based on multi-scale full convolution and CRF[J]. Journal of Yanshan University, 2021, 45(4):367-376. 10.3969/j.issn.1007-791X.2021.04.010 | |
16 | 罗禹杰,张剑,陈亮,等. 基于自适应空间特征融合的轻量化目标检测算法[J]. 激光与光电子学进展, 2022, 59(4): No.0415004. 10.3788/LOP202259.0415004 |
LUO Y J, ZHANG J, CHEN L, et al. Lightweight target detection algorithm based on adaptive spatial feature fusion[J]. Laser and Optoelectronics Progress, 2022, 59(4): No.0415004. 10.3788/LOP202259.0415004 | |
17 | 李想,熊进刚. 基于深度学习的低光照条件的混凝土裂缝检测[J]. 建筑结构, 2021, 51(S2):1046-1050. |
LI X, XIONG J G. Detection of concrete cracks in low light condition based on deep learning[J]. Building Structure, 2021, 51(S2):1046-1050. | |
18 | ZHU J Q, ZHONG J T, MA T, et al. Pavement distress detection using convolutional neural networks with images captured via UAV[J]. Automation in Construction, 2022, 133: No.103991. 10.1016/j.autcon.2021.103991 |
19 | 宋立博,费燕琼. 两类YOLOv4-tiny简化网络及其裂缝检测性能比较[J]. 同济大学学报(自然科学版), 2022, 50(1):129-137. |
SONG L B, FEI Y Q. Comparison of two types YOLOv4-tiny simplified networks and their crack detection performance[J]. Journal of Tongji University (Natural Science), 2022, 50(1):129-137. | |
20 | 孔维刚,李文婧,王秋艳,等. 基于改进YOLOv4算法的轻量化网络设计与实现[J]. 计算机工程, 2022, 48(3):181-188. |
KONG W G, LI W J, WANG Q Y, et al. Design and implementation of lightweight network based on improved YOLOv4 algorithm[J]. Computer Engineering, 2022, 48(3):181-188. | |
21 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. 10.1109/cvpr.2016.91 |
22 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2022-02-12].. |
23 | WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 1571-1580. 10.1109/cvprw50498.2020.00203 |
24 | MISRA D. Mish: a self regularized non-monotonic activation function[C]// Proceedings of the 2020 British Machine Vision Conference. Durham: BMVA Press, 2020: No.90. |
25 | HE K M, ZHANG X Y, REN S Q. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
26 | PURKAIT P, ZHAO C, ZACH C. SPP-Net: deep absolute pose regression with synthetic views[EB/OL]. (2017-12-09) [2022-02-12].. |
27 | HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586. 10.1109/cvpr42600.2020.00165 |
28 | 赵文清,杨盼盼. 双向特征融合与注意力机制结合的目标检测[J]. 智能系统学报, 2021, 16(6):1098-1105. 10.11992/tis.202012029 |
ZHAO W Q, YANG P P. Target detection based on bidirectional feature fusion and an attention mechanism[J]. CAAI Transactions on Intelligent Systems, 2021, 16(6):1098-1105. 10.11992/tis.202012029 | |
29 | RIBANI R, MARENGONI M. A survey of transfer learning for convolutional neural networks[C]// Proceedings of the 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials. Piscataway: IEEE, 2019: 47-57. 10.1109/sibgrapi-t.2019.00010 |
30 | SAHEL S, ALSAHAFI M, ALGHAMDI M, et al. Logo detection using deep learning with pretrained CNN models[J]. Engineering, Technology & Applied Science Research, 2021, 11(1): 6724-6729. 10.48084/etasr.3919 |
[1] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[2] | Yanjun LI, Yaodong GE, Qi WANG, Weiguo ZHANG, Chen LIU. Improved KLEIN algorithm and its quantum analysis [J]. Journal of Computer Applications, 2024, 44(9): 2810-2817. |
[3] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[4] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[5] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[6] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[7] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[8] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[9] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[10] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[11] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[12] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[13] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[14] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[15] | Yongjin ZHANG, Jian XU, Mingxing ZHANG. Lightweight algorithm for impurity detection in raw cotton based on improved YOLOv7 [J]. Journal of Computer Applications, 2024, 44(7): 2271-2278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||