Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (9): 2700-2706.DOI: 10.11772/j.issn.1001-9081.2022091419
• 2022 10th CCF Conference on Big Data • Previous Articles Next Articles
Xuanli WANG1,2, Xiaolong JIN1,2(), Zhongni HOU1,2, Huaming LIAO1,2, Jin ZHANG1,2
Received:
2022-09-21
Revised:
2022-11-07
Accepted:
2022-11-14
Online:
2023-02-24
Published:
2023-09-10
Contact:
Xiaolong JIN
About author:
WANG Xuanli, born in 1996, M. S. Her research interests include knowledge graph.
王炫力1,2, 靳小龙1,2(), 侯中妮1,2, 廖华明1,2, 张瑾1,2
通讯作者:
靳小龙
作者简介:
王炫力(1996—),女,安徽亳州人,硕士,CCF会员,主要研究方向:知识图谱CLC Number:
Xuanli WANG, Xiaolong JIN, Zhongni HOU, Huaming LIAO, Jin ZHANG. Forest-based entity-relation joint extraction model[J]. Journal of Computer Applications, 2023, 43(9): 2700-2706.
王炫力, 靳小龙, 侯中妮, 廖华明, 张瑾. 基于森林的实体关系联合抽取模型[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2700-2706.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022091419
类目 | 实例 |
---|---|
句子 | 王某是{[(某校)某协会]会长} |
嵌套实体内三元组 | {某校学生会,学校,某校} |
嵌套实体间三元组 | {王某,职位,某校学生会会长} |
{王某,部门,某校学生会} | |
{王某,国家,某校} |
Tab. 1 Nested entities
类目 | 实例 |
---|---|
句子 | 王某是{[(某校)某协会]会长} |
嵌套实体内三元组 | {某校学生会,学校,某校} |
嵌套实体间三元组 | {王某,职位,某校学生会会长} |
{王某,部门,某校学生会} | |
{王某,国家,某校} |
数据集 | 训练集 实体数 | 验证集 实体数 | 测试集 实体数 | 嵌套实体比率/% |
---|---|---|---|---|
ACE2005 | 7 194 | 969 | 1 047 | 36.4 |
WebNLG | 5 019 | 500 | 703 | 6.8 |
SciERC | 1 861 | 275 | 551 | 9.5 |
NYT | 56 196 | 5 000 | 5 000 | 1.0 |
Tab. 2 Statistics of datasets
数据集 | 训练集 实体数 | 验证集 实体数 | 测试集 实体数 | 嵌套实体比率/% |
---|---|---|---|---|
ACE2005 | 7 194 | 969 | 1 047 | 36.4 |
WebNLG | 5 019 | 500 | 703 | 6.8 |
SciERC | 1 861 | 275 | 551 | 9.5 |
NYT | 56 196 | 5 000 | 5 000 | 1.0 |
数据集 | 模型 | Prec | Rec | F1 |
---|---|---|---|---|
NYT | TPLinker(LSTM)[ | 86.00 | 82.00 | 84.00 |
TPLinker(BERT)[ | 91.40 | 92.60 | 92.00 | |
SPN[ | 92.50 | 92.20 | 92.30 | |
EF2LTF | 93.00 | 93.10 | 93.10 | |
WebNLG | TPLinker(LSTM)[ | 91.90 | 81.60 | 86.40 |
TPLinker(BERT)[ | 88.90 | 84.50 | 86.70 | |
SPN[ | 85.20 | 82.40 | 83.80 | |
EF2LTF | 90.30 | 87.20 | 88.80 | |
SciERC | SciIE[ | 47.60 | 33.50 | 39.30 |
DyGIE[ | — | — | 41.60 | |
SpERT(BERT)[ | 49.79 | 43.53 | 46.44 | |
DyGIE++[ | — | — | 48.40 | |
SpERT(SciBERT)[ | 53.40 | 48.54 | 50.84 | |
EF2LTF | 57.17 | 46.61 | 51.35 | |
ACE2005 | SPN[ | 48.39 | 39.28 | 43.36 |
TPLinker(BERT)[ | 65.78 | 32.54 | 43.54 | |
DyGIE++[ | 58.46 | 39.72 | 47.30 | |
SpERT(BERT)[ | 51.51 | 52.97 | 52.23 | |
EF2LTF | 59.61 | 50.81 | 54.86 |
Tab. 3 Experimental results on different datasets
数据集 | 模型 | Prec | Rec | F1 |
---|---|---|---|---|
NYT | TPLinker(LSTM)[ | 86.00 | 82.00 | 84.00 |
TPLinker(BERT)[ | 91.40 | 92.60 | 92.00 | |
SPN[ | 92.50 | 92.20 | 92.30 | |
EF2LTF | 93.00 | 93.10 | 93.10 | |
WebNLG | TPLinker(LSTM)[ | 91.90 | 81.60 | 86.40 |
TPLinker(BERT)[ | 88.90 | 84.50 | 86.70 | |
SPN[ | 85.20 | 82.40 | 83.80 | |
EF2LTF | 90.30 | 87.20 | 88.80 | |
SciERC | SciIE[ | 47.60 | 33.50 | 39.30 |
DyGIE[ | — | — | 41.60 | |
SpERT(BERT)[ | 49.79 | 43.53 | 46.44 | |
DyGIE++[ | — | — | 48.40 | |
SpERT(SciBERT)[ | 53.40 | 48.54 | 50.84 | |
EF2LTF | 57.17 | 46.61 | 51.35 | |
ACE2005 | SPN[ | 48.39 | 39.28 | 43.36 |
TPLinker(BERT)[ | 65.78 | 32.54 | 43.54 | |
DyGIE++[ | 58.46 | 39.72 | 47.30 | |
SpERT(BERT)[ | 51.51 | 52.97 | 52.23 | |
EF2LTF | 59.61 | 50.81 | 54.86 |
模型 | Prec | Rec | F1 |
---|---|---|---|
EF2LTF | 59.61 | 50.81 | 54.86 |
EF2LTF(-ETI) | 59.51 | 49.99 | 54.29 |
EF2LTF(-ETI-LTF) | 46.20 | 42.79 | 44.43 |
EF2LTF(-ETI-LTF-EF) | 48.39 | 39.28 | 43.36 |
Tab. 4 Ablation experimental results
模型 | Prec | Rec | F1 |
---|---|---|---|
EF2LTF | 59.61 | 50.81 | 54.86 |
EF2LTF(-ETI) | 59.51 | 49.99 | 54.29 |
EF2LTF(-ETI-LTF) | 46.20 | 42.79 | 44.43 |
EF2LTF(-ETI-LTF-EF) | 48.39 | 39.28 | 43.36 |
1 | ZHENG S C, WANG F, BAO H Y, et al. Joint extraction of entities and relations based on a novel tagging scheme[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2017: 1227-1236. 10.18653/v1/p17-1113 |
2 | WANG Y C, YU B W, ZHANG Y Y, et al. TPLinker: single-stage joint extraction of entities and relations through token pair linking[C]// Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, PA: ACL, 2020: 1572-1582. 10.18653/v1/2020.coling-main.138 |
3 | LUAN Y, WADDEN D, HE L H, et al. A general framework for information extraction using dynamic span graphs[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: ACL, 2019: 3036-3046. 10.18653/v1/n19-1308 |
4 | WADDEN D, WENNBERG U, LUAN Y, et al. Entity, relation, and event extraction with contextualized span representations[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: ACL, 2019: 5784-5789. 10.18653/v1/d19-1585 |
5 | EBERTS M, ULGES A. Span-based joint entity and relation extraction with Transformer pre-training[C]// Proceedings of the 24th European Conference on Artificial Intelligence. Amsterdam: IOS Press, 2020: 2006-2013. 10.18653/v1/2021.eacl-main.319 |
6 | GARDENT C, SHIMORINA A, NARAYAN S, et al. Creating training corpora for NLG micro-planners[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2017: 179-188. 10.18653/v1/p17-1017 |
7 | RIEDEL S, YAO L M, McCALLUM A. Modeling relations and their mentions without labeled text[C]// Proceedings of the 2010 Joint European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 6323. Berlin: Springer, 2010: 148-163. 10.5715/jnlp.4.3_1 |
8 | LUAN Y, HE L H, OSTENDORF M, et al. Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2018: 3219-3232. 10.18653/v1/d18-1360 |
9 | WALKER C, STRASSEL S, MEDERO J, et al. ACE 2005 multilingual training corpus[DS/OL]. (2016-02-15) [2022-02-12].. |
10 | ZELENKO D, AONE C, RICHARDELLA A. Kernel methods for relation extraction[C]// Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2002: 71-78. 10.3115/1118693.1118703 |
11 | SUI D B, CHEN Y B, LIU K, et al. Joint entity and relation extraction with set prediction networks[EB/OL]. (2020-11-10) [2022-02-11].. 10.1109/tnnls.2023.3264735 |
12 | METKE-JIMENEZ A, KARIMI S. Concept extraction to identify adverse drug reactions in medical forums: a comparison of algorithms[EB/OL]. (2015-04-27) [2022-01-14].. 10.1145/2632188.2632200 |
13 | FISHER J, VLACHOS A. Merge and label: a novel neural network architecture for nested NER[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2019: 5840-5850. 10.18653/v1/p19-1585 |
14 | JU M Z, MIWA M, ANANIADOU S. A neural layered model for nested named entity recognition[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg, PA: ACL, 2018: 1446-1459. 10.18653/v1/n18-1131 |
15 | SHIBUYA T, HOVY E. Nested named entity recognition via second-best sequence learning and decoding[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 605-620. 10.1162/tacl_a_00334 |
16 | WANG Y R, SHINDO H, MATSUMOTO Y, et al. Nested named entity recognition via explicitly excluding the influence of the best path[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2021: 3547-3557. 10.18653/v1/2021.acl-long.275 |
17 | SOHRAB M G, MIWA M. Deep exhaustive model for nested named entity recognition[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2018: 2843-2849. 10.18653/v1/d18-1309 |
18 | LI X Y, FENG J R, MENG Y X, et al. A unified MRC framework for named entity recognition[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2020: 5849-5859. 10.18653/v1/2020.acl-main.519 |
19 | LI X, YANG J N, LIU H, et al. HTLinker: a head-to-tail linker for nested named entity recognition[J]. Symmetry, 2021, 13(9): No.1596. 10.3390/sym13091596 |
20 | STRAKOVÁ J, STRAKA M, HAJIC J. Neural architectures for nested NER through linearization[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2019: 5326-5331. 10.18653/v1/p19-1527 |
21 | TAN Z Q, SHEN Y L, ZHANG S, et al. A sequence-to-set network for nested named entity recognition[C]// Proceedings of the 30th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2021: 3936-3942. 10.24963/ijcai.2021/542 |
22 | KATIYAR A, CARDIE C. Nested named entity recognition revisited[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg, PA: ACL, 2018: 861-871. 10.18653/v1/n18-1079 |
23 | GUPTA P, YASEEN U, SCHÜTZE H. Linguistically informed relation extraction and neural architectures for nested named entity recognition in BioNLP-OST 2019[C]// Proceedings of the 5th Workshop on BioNLP Open Shared Tasks. Stroudsburg, PA: ACL, 2019: 132-142. 10.18653/v1/d19-5720 |
24 | ZHANG H Y, ZHANG G Q, MA Y. Syntax-informed self-attention network for span-based joint entity and relation extraction[J]. Applied Sciences, 2021, 11(4): No.1480. 10.3390/app11041480 |
25 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: ACL, 2019: 4171-4186. 10.18653/v1/n18-2 |
26 | YU B W, ZHANG Z Y, SHU X B, et al. Joint extraction of entities and relations based on a novel decomposition strategy[C]// Proceedings of the 24th European Conference on Artificial Intelligence. Amsterdam: IOS Press, 2020: 2006-2013. |
27 | MIWA M, BANSAL M. End-to-end relation extraction using LSTMs on sequences and tree structures[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2016: 1105-1116. 10.18653/v1/p16-1105 |
28 | YAN H, GUI T, DAI J Q, et al. A unified generative framework for various NER subtasks[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2021: 5808-5822. 10.18653/v1/2021.acl-long.451 |
29 | LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[EB/OL]. (2019-01-04) [2022-04-09].. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||