Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (2): 677-684.DOI: 10.11772/j.issn.1001-9081.2024070990
• Frontier and comprehensive applications • Previous Articles
Meng WANG1, Daqian ZHANG2, Bingyan ZHOU3, Qianying MA3, Jidong LYU4()
Received:
2024-07-15
Revised:
2024-11-16
Accepted:
2024-11-22
Online:
2024-12-03
Published:
2025-02-10
Contact:
Jidong LYU
About author:
WANG Meng, born in 1983, M. S., senior engineer. His research interests include railroad signal.Supported by:
通讯作者:
吕继东
作者简介:
王猛(1983—),男,河南濮阳人,高级工程师,硕士,主要研究方向:铁路信号基金资助:
CLC Number:
Meng WANG, Daqian ZHANG, Bingyan ZHOU, Qianying MA, Jidong LYU. Fault diagnosis method for train control on-board interface equipment of CTCS-3 based on temporal knowledge graph completion[J]. Journal of Computer Applications, 2025, 45(2): 677-684.
王猛, 张大千, 周冰艳, 马倩影, 吕继东. 基于时序知识图谱补全的CTCS-3级列控车载接口设备故障诊断方法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 677-684.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024070990
故障设备 | 故障原因 | 故障现象 |
---|---|---|
RTU | 1.无线通信超时; 2.网络资源不可用; 3.MT硬件故障; 4.MT软件故障 | 1.实施最大常用制动 2.降级运行 |
BTM | 1.BTM硬件故障; 2.BTM端口无效; 3.BSA错误; 4.全零应答器; 5.应答器丢失 | 1.启动失败; 2.ATPCU故障、停车; 3.C2CU故障 4.应答器报文错误、制动、停车; 5.主机与DMI通信中断;6.BTM报文错误 |
TCR | 1.TCR传输不良; 2.TCR状态异常 3.TCR信息不合理; 4.TCR硬件故障 | 1.C2CU安全软件故障、制动停车; 2.TCR故障; 3.载频核对不一致 |
SDU | 1.ODO无服务; 2.雷达故障 3.速传故障; 4.SDU硬件故障 | 1.速度传感器故障、SDU故障; 2.速度传感器故障 3.雷达故障; 4.ATPCU故障、制动、停车 |
DMI | 1.DMI硬件故障; 2.DMI通信故障 3.DMI软件故障 | 1.DMI无法启动; 2.ATP故障、制动、停车; 3.DMI显示异常 4.无法输入; 5.主机与人机界面通信暂时终止、停车 |
VDX | 1.继电器故障 2.接口故障 | 1.启动失败; 2.制动故障; 3.制动测试失败; 4.主机与DMI通信中断、制动、停车 |
Tab. 1 Statistics of fault equipment, causes and phenomena
故障设备 | 故障原因 | 故障现象 |
---|---|---|
RTU | 1.无线通信超时; 2.网络资源不可用; 3.MT硬件故障; 4.MT软件故障 | 1.实施最大常用制动 2.降级运行 |
BTM | 1.BTM硬件故障; 2.BTM端口无效; 3.BSA错误; 4.全零应答器; 5.应答器丢失 | 1.启动失败; 2.ATPCU故障、停车; 3.C2CU故障 4.应答器报文错误、制动、停车; 5.主机与DMI通信中断;6.BTM报文错误 |
TCR | 1.TCR传输不良; 2.TCR状态异常 3.TCR信息不合理; 4.TCR硬件故障 | 1.C2CU安全软件故障、制动停车; 2.TCR故障; 3.载频核对不一致 |
SDU | 1.ODO无服务; 2.雷达故障 3.速传故障; 4.SDU硬件故障 | 1.速度传感器故障、SDU故障; 2.速度传感器故障 3.雷达故障; 4.ATPCU故障、制动、停车 |
DMI | 1.DMI硬件故障; 2.DMI通信故障 3.DMI软件故障 | 1.DMI无法启动; 2.ATP故障、制动、停车; 3.DMI显示异常 4.无法输入; 5.主机与人机界面通信暂时终止、停车 |
VDX | 1.继电器故障 2.接口故障 | 1.启动失败; 2.制动故障; 3.制动测试失败; 4.主机与DMI通信中断、制动、停车 |
故障设备 | 编号 | 故障原因 | 故障占比/% |
---|---|---|---|
RTU | FI-1 | 网络资源不可用 | 21.3 |
FI-2 | 电台故障 | 10.9 | |
FI-3 | RBC异常 | 6.1 | |
TCR | FII-1 | TCR硬件故障 | 4.7 |
FII-2 | TCR传输异常 | 5.5 | |
BTM | FIII-1 | BAS错误 | 12.2 |
FIII-2 | BTM接口故障 | 7.4 | |
SDU | FIV-1 | 速传故障 | 3.2 |
FIV-2 | 雷达故障 | 7.2 | |
DMI | FV-1 | DMI硬件故障 | 8.2 |
VDX | FVI-1 | 继电器故障 | 6.3 |
FVI-2 | VDX报文无效 | 2.9 | |
FVI-3 | VDX端口无效 | 4.1 |
Tab. 2 Causes and percentages of faults
故障设备 | 编号 | 故障原因 | 故障占比/% |
---|---|---|---|
RTU | FI-1 | 网络资源不可用 | 21.3 |
FI-2 | 电台故障 | 10.9 | |
FI-3 | RBC异常 | 6.1 | |
TCR | FII-1 | TCR硬件故障 | 4.7 |
FII-2 | TCR传输异常 | 5.5 | |
BTM | FIII-1 | BAS错误 | 12.2 |
FIII-2 | BTM接口故障 | 7.4 | |
SDU | FIV-1 | 速传故障 | 3.2 |
FIV-2 | 雷达故障 | 7.2 | |
DMI | FV-1 | DMI硬件故障 | 8.2 |
VDX | FVI-1 | 继电器故障 | 6.3 |
FVI-2 | VDX报文无效 | 2.9 | |
FVI-3 | VDX端口无效 | 4.1 |
log_no | relation | equ_no | t |
---|---|---|---|
rd network resource available | cause | radio service lost | 1 |
radio service lost | cause | connection closed | 1 |
connection closed | cause | lstm nid=45 | 0 |
lstm nid=45 | cause | radio timeout | 0 |
radio timeout | cause | connection lost service | 1 |
connection lost service | cause | timeout | 0 |
timeout | equipment_is | RTU | -1 |
Tab. 3 Processed fault data
log_no | relation | equ_no | t |
---|---|---|---|
rd network resource available | cause | radio service lost | 1 |
radio service lost | cause | connection closed | 1 |
connection closed | cause | lstm nid=45 | 0 |
lstm nid=45 | cause | radio timeout | 0 |
radio timeout | cause | connection lost service | 1 |
connection lost service | cause | timeout | 0 |
timeout | equipment_is | RTU | -1 |
phe1_no | fault_phe | phe1_no | fault_phe |
---|---|---|---|
1 | 无线连接超时 | 5 | 列车收到全零应答器 |
2 | 列车进入冒进模式 | 6 | DMI报测速雷达故障 |
3 | L5码突降为HU码 | 7 | ATP报应答器一致性 |
4 | DMI报BTM故障 |
Tab. 4 Entity of fault phenomenon 1 when phe1_no is 1~7
phe1_no | fault_phe | phe1_no | fault_phe |
---|---|---|---|
1 | 无线连接超时 | 5 | 列车收到全零应答器 |
2 | 列车进入冒进模式 | 6 | DMI报测速雷达故障 |
3 | L5码突降为HU码 | 7 | ATP报应答器一致性 |
4 | DMI报BTM故障 |
嵌入方式 | ||||
---|---|---|---|---|
基于组合 | 0.001 | 50 | 1 | 128 |
基于向量 | 0.001 | 100 | 1 | 64 |
基于系数 | 0.001 | 100 | 1 | 64 |
Tab. 5 Parameters of optimal results of three temporal embedding methods
嵌入方式 | ||||
---|---|---|---|---|
基于组合 | 0.001 | 50 | 1 | 128 |
基于向量 | 0.001 | 100 | 1 | 64 |
基于系数 | 0.001 | 100 | 1 | 64 |
嵌入方式 | MRR | Hits@1 | Hits@3 | Hits@10 |
---|---|---|---|---|
基于组合 | 0.62 | 0.36 | 0.47 | 0.68 |
基于向量 | 0.70 | 0.48 | 0.59 | 0.72 |
基于系数 | 0.34 | 0.25 | 0.33 | 0.56 |
Tab. 6 Evaluation results of three temporal embedding methods
嵌入方式 | MRR | Hits@1 | Hits@3 | Hits@10 |
---|---|---|---|---|
基于组合 | 0.62 | 0.36 | 0.47 | 0.68 |
基于向量 | 0.70 | 0.48 | 0.59 | 0.72 |
基于系数 | 0.34 | 0.25 | 0.33 | 0.56 |
参数 | 值 | 参数 | 值 |
---|---|---|---|
batch_size | 128 | 学习率 | 0.001 |
epoch | 100 | 学习率衰减因子 | 0.01 |
优化器 | Adam | Bi-LSTM层Dropout | 0.5 |
文本嵌入维度 | 100 |
Tab. 7 Fault diagnosis network hyperparameters
参数 | 值 | 参数 | 值 |
---|---|---|---|
batch_size | 128 | 学习率 | 0.001 |
epoch | 100 | 学习率衰减因子 | 0.01 |
优化器 | Adam | Bi-LSTM层Dropout | 0.5 |
文本嵌入维度 | 100 |
层序号 | 类型 | 输出 | 层序号 | 类型 | 输出 |
---|---|---|---|---|---|
1 | T-TransE | (None,30,300) | 5 | Dense | (None,100) |
2 | Bi-LSTM | (None,30,100) | 6 | Dropout | (None,100) |
3 | Bi-LSTM | (None,400) | 7 | Dense | (None,13) |
4 | Self-Attention | (None,400) |
Tab. 8 Structure setting of fault diagnosis network
层序号 | 类型 | 输出 | 层序号 | 类型 | 输出 |
---|---|---|---|---|---|
1 | T-TransE | (None,30,300) | 5 | Dense | (None,100) |
2 | Bi-LSTM | (None,30,100) | 6 | Dropout | (None,100) |
3 | Bi-LSTM | (None,400) | 7 | Dense | (None,13) |
4 | Self-Attention | (None,400) |
编号 | 模型 | 输入 | 结构 | 输出 |
---|---|---|---|---|
M1 | T-TransE- Bi-LSTM-SA[ | 不引入故障 设备的时序 知识图谱 | T-TransE | (None,30,300) |
Bi-LSTM | (None,30,100) | |||
Bi-LSTM | (None,400) | |||
Self-Attention | (None,400) | |||
Dense | (None,100) | |||
Dropout | (None,100) | |||
Dense | (None,13) | |||
M2 | Bi-LSTM-SA[ | 引入故障 设备的 时序知识 图谱 | Embedding | (None,30,300) |
Bi-LSTM | (None,30,100) | |||
Bi-LSTM | (None,400) | |||
Self-Attention | (None,400) | |||
Dense | (None,100) | |||
Dropout | (None,100) | |||
Dense | (None,13) | |||
M3 | Bi-LSTM[ | 引入故障 设备的 时序知识 图谱 | Embedding | (None,30,300) |
Bi-LSTM | (None,30,100) | |||
Bi-LSTM | (None,400) | |||
Dense | (None,100) | |||
Dropout | (None,100) | |||
Dense | (None,13) | |||
M4 | 1D CNN-LSTM[ | 原始 故障 数据 | Embedding | (None,30,300) |
1D CNN | (None,30,100) | |||
LSTM | (None,400) | |||
Dense | (None,100) | |||
Dropout | (None,100) | |||
Dense | (None,13) | |||
M5 | TextCNN[ | 原始 故障 数据 | Embedding | (None,30,300) |
1D CNN | (None,30,100) | |||
1D CNN | (None,30,400) | |||
Flatten | (None,12 400) | |||
Dense | (None,100) | |||
Dropout | (None,100) | |||
Dense | (None,13) |
Tab. 9 Control experimental setting
编号 | 模型 | 输入 | 结构 | 输出 |
---|---|---|---|---|
M1 | T-TransE- Bi-LSTM-SA[ | 不引入故障 设备的时序 知识图谱 | T-TransE | (None,30,300) |
Bi-LSTM | (None,30,100) | |||
Bi-LSTM | (None,400) | |||
Self-Attention | (None,400) | |||
Dense | (None,100) | |||
Dropout | (None,100) | |||
Dense | (None,13) | |||
M2 | Bi-LSTM-SA[ | 引入故障 设备的 时序知识 图谱 | Embedding | (None,30,300) |
Bi-LSTM | (None,30,100) | |||
Bi-LSTM | (None,400) | |||
Self-Attention | (None,400) | |||
Dense | (None,100) | |||
Dropout | (None,100) | |||
Dense | (None,13) | |||
M3 | Bi-LSTM[ | 引入故障 设备的 时序知识 图谱 | Embedding | (None,30,300) |
Bi-LSTM | (None,30,100) | |||
Bi-LSTM | (None,400) | |||
Dense | (None,100) | |||
Dropout | (None,100) | |||
Dense | (None,13) | |||
M4 | 1D CNN-LSTM[ | 原始 故障 数据 | Embedding | (None,30,300) |
1D CNN | (None,30,100) | |||
LSTM | (None,400) | |||
Dense | (None,100) | |||
Dropout | (None,100) | |||
Dense | (None,13) | |||
M5 | TextCNN[ | 原始 故障 数据 | Embedding | (None,30,300) |
1D CNN | (None,30,100) | |||
1D CNN | (None,30,400) | |||
Flatten | (None,12 400) | |||
Dense | (None,100) | |||
Dropout | (None,100) | |||
Dense | (None,13) |
故障类别 | 本文方法 | M1 | M2 | M3 | M4 | M5 |
---|---|---|---|---|---|---|
FI-1 | 0.99 | 0.95 | 0.96 | 0.95 | 0.96 | 0.92 |
FI-2 | 0.98 | 0.92 | 0.90 | 0.92 | 0.90 | 0.95 |
FI-3 | 0.95 | 0.96 | 0.95 | 0.95 | 0.95 | 0.90 |
FII-1 | 0.95 | 0.82 | 0.80 | 0.77 | 0.84 | 0.93 |
FII-2 | 0.90 | 0.87 | 0.85 | 0.84 | 0.83 | 0.75 |
FIII-1 | 0.99 | 0.90 | 0.91 | 0.86 | 0.82 | 0.84 |
FIII-2 | 0.97 | 0.92 | 0.89 | 0.90 | 0.90 | 0.88 |
FIV-1 | 0.96 | 0.95 | 0.83 | 0.88 | 0.89 | 0.91 |
FIV-2 | 0.97 | 0.91 | 0.90 | 0.93 | 0.82 | 0.79 |
FV-1 | 0.95 | 0.94 | 0.89 | 0.85 | 0.89 | 0.90 |
FVI-1 | 0.93 | 0.94 | 0.95 | 0.91 | 0.94 | 0.90 |
FVI-2 | 1.00 | 0.96 | 0.94 | 0.88 | 0.95 | 0.92 |
FVI-3 | 0.94 | 0.93 | 0.90 | 0.91 | 0.86 | 0.90 |
Tab. 10 F1 scores of proposed method and control group
故障类别 | 本文方法 | M1 | M2 | M3 | M4 | M5 |
---|---|---|---|---|---|---|
FI-1 | 0.99 | 0.95 | 0.96 | 0.95 | 0.96 | 0.92 |
FI-2 | 0.98 | 0.92 | 0.90 | 0.92 | 0.90 | 0.95 |
FI-3 | 0.95 | 0.96 | 0.95 | 0.95 | 0.95 | 0.90 |
FII-1 | 0.95 | 0.82 | 0.80 | 0.77 | 0.84 | 0.93 |
FII-2 | 0.90 | 0.87 | 0.85 | 0.84 | 0.83 | 0.75 |
FIII-1 | 0.99 | 0.90 | 0.91 | 0.86 | 0.82 | 0.84 |
FIII-2 | 0.97 | 0.92 | 0.89 | 0.90 | 0.90 | 0.88 |
FIV-1 | 0.96 | 0.95 | 0.83 | 0.88 | 0.89 | 0.91 |
FIV-2 | 0.97 | 0.91 | 0.90 | 0.93 | 0.82 | 0.79 |
FV-1 | 0.95 | 0.94 | 0.89 | 0.85 | 0.89 | 0.90 |
FVI-1 | 0.93 | 0.94 | 0.95 | 0.91 | 0.94 | 0.90 |
FVI-2 | 1.00 | 0.96 | 0.94 | 0.88 | 0.95 | 0.92 |
FVI-3 | 0.94 | 0.93 | 0.90 | 0.91 | 0.86 | 0.90 |
1 | 安玉华. 列控车载设备(CTCS3-300T型)故障分析与研究[D]. 北京:中国铁道科学研究院, 2015: 69-69. |
AN Y H. The failure analysis and research of the train control on-board equipment (CTCS3-300T)[D]. Beijing: China Academy of Railway Sciences, 2015: 69-69. | |
2 | 王子琪. 数模驱动的高铁列控车载设备故障传播路径识别与测试[D]. 北京:北京交通大学, 2022. |
WANG Z Q. Identification and testing of fault propagation paths of on-board equipment of CTCS driven by data and model[D]. Beijing: Beijing Jiaotong University, 2022. | |
3 | 何涛,韩敬佳. CTCS-3级列控车载设备的形式化建模与验证[J]. 重庆大学学报, 2023, 46(9):120-129. |
HE T, HAN J J. Formal modeling and verification of CTCS-3 level train control on-board equipment[J]. Journal of Chongqing University, 2023, 46(9): 120-129. | |
4 | 林经源,何涛. 基于STPA和时序逻辑的RBC切换场景安全分析[J]. 电子技术与软件工程, 2023(6):210-213. |
LIN J Y, HE T. Safety analysis of RBC switching scenarios based on STPA and temporal logic[J]. Electronic Technology and Software Engineering, 2023(6): 210-213. | |
5 | 展鑫,孙颖. 列控系统车-地无线通信协议测试研究[J]. 铁路通信信号工程技术, 2023, 20(10):30-36. |
ZHAN X, SUN Y. Research on testing and implementation of radio communication protocol for high-speed railway[J]. Railway Signalling and Communication Engineering, 2023, 20(10): 30-36. | |
6 | ZHANG D, CAO Y, ZHANG M, et al. Fault diagnosis of on-board equipment in CTCS-3 based on CNN-LSTM model[C]// Proceedings of the 2022 China Automation Congress. Piscataway: IEEE, 2022: 5484-5489. |
7 | 杨嘉明. 基于LSTM-BP神经网络的列控车载设备故障诊断方法[D] 北京:北京交通大学, 2018: 75-75. |
YANG J M. Fault diagnosis method of the on-board equipment of CTCS based on LSTM-BP neural network[D]. Beijing: Beijing Jiaotong University, 2018: 75-75. | |
8 | HU H, TANG B, GONG X, et al. Intelligent fault diagnosis of the high-speed train with big data based on deep neural networks[J]. IEEE Transactions on Industrial Informatics, 2017, 13(4): 2106-2116. |
9 | LIU H, MA R, LI D, et al. Machinery fault diagnosis based on deep learning for time series analysis and knowledge graphs[J]. Journal of Signal Processing Systems, 2021, 93(12): 1433-1455. |
10 | 董兴芝. 面向智能高铁安全保障的知识图谱构建及应用关键技术研究[D]. 北京:中国铁道科学研究院, 2022. |
DONG X Z. Research on key technology of knowledge graph construction and its application for intelligent high-speed railway safety assurance[D]. Beijing: China Academy of Railway Sciences, 2022. | |
11 | 薛莲,姚新文,郑启明,等. 高铁列控车载设备故障知识图谱构建方法研究[J]. 铁道科学与工程学报, 2023, 20(1):34-43. |
XUE L, YAO X W, ZHENG Q M, et al. Research on construction method of fault knowledge graph of CTCS on-board equipment[J]. Journal of Railway Science and Engineering, 2023, 20(1): 34-43. | |
12 | 李志欣. 简谈CTCS-3级列控系统无线链接超时问题[J]. 铁路通信信号工程技术, 2018, 15(3):28-33. |
LI Z X. Wireless connection timeout problem of CTCS-3 train control system[J]. Railway Signalling & Communication Engineering, 2018, 15(3): 28-33. | |
13 | LIU X, TA Z, AN M, et al. Research on suppressing the interference of on-board BTM antenna by installing metal shielding plate[C]// Proceedings of the 5th Asia Conference on Energy and Electrical Engineering. Piscataway: IEEE, 2022: 123-127. |
14 | 彭继宇. 应答器报文数据校验方法研究及软件设计[D]. 成都:西南交通大学, 2022. |
PENG J Y. Research and software design of data verification method for balise telegram[D]. Chengdu: Southwest Jiaotong University, 2022. | |
15 | 吕岩琪. CTCS3-300T列控车载应答器传输系统故障分析及处理建议[J]. 铁路通信信号工程技术, 2021, 18(9):99-103. |
LYU Y Q. Fault analysis and suggestions on fault handling of onboard balise transmission system of CTCS3-300T train control system[J]. Railway Signalling and Communication Engineering, 2021, 18(9): 99-103. | |
16 | 周德豹. 轨道电路读取器的设计原理及应用[J]. 铁道通信信号, 2008, 44(8):4-5. |
ZHOU D B. Principle and application of track circuit reader[J]. Railway Signalling and Communication, 2008, 44(8): 4-5. | |
17 | LI M, SUN Z, ZHANG W, et al. Leveraging semantic property for temporal knowledge graph completion[J]. Applied Intelligence, 2023, 53(8): 9247-9260. |
18 | SHEN T, ZHANG F, CHENG J. A comprehensive overview of knowledge graph completion[J]. Knowledge-Based Systems, 2022, 255: No.109597. |
19 | FAN B, SHAO C, LIU Y, et al. A new approach in developing an urban rail transit emergency knowledge graph based on operation fault logs[J]. Journal of Transportation Safety and Security, 2023, 15(10): 1057-1085. |
20 | 魏伟,赵小强,丁艳华,等. 基于BiLSTM和改进注意力机制的高铁车载设备故障诊断[J]. 铁道学报, 2022, 44(11):53-62. |
WEI W, ZHAO X Q, DING Y H, et al. Fault diagnosis of vehicle on-board equipment based on BiLSTM and attention mechanism[J]. Journal of the China Railway Society, 2022, 44(11): 53-62. | |
21 | MOUSSELLY-SERGIEH H, BOTSCHEN T, GUREVYCH I, et al. A multimodal translation-based approach for knowledge graph representation learning[C]// Proceedings of the 7th Joint Conference on Lexical and Computational Semantics. Stroudsburg: ACL, 2018: 225-234. |
22 | ZHANG D, LV J, LUO Z, et al. Fault diagnosis of CTCS-3 on-board logic function based on SSGAN framework[C]// Proceedings of the IEEE 26th International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2023: 3349-3354. |
23 | AHMED S, SAIF A F M S, HANIF, M I, et al. Att-BiL-SL: attention-based Bi-LSTM and sequential LSTM for describing video in the textual formation[J]. Applied Sciences, 2021, 12(1): No.317. |
24 | AL-ASWADI F N, CHAN H Y, GAN K H. Automatic ontology construction from text: a review from shallow to deep learning trend[J]. Artificial Intelligence Review, 2020, 53(6): 3901-3928. |
25 | SHINDE O, KHOBRAGADE A. Knowledge graph creation on Windows malwares and completion using knowledge graph embedding[C]// Proceedings of the 4th International Conference on Advances in Computing, Communication Control and Networking. Piscataway: IEEE, 2022: 1980-1984. |
26 | HUANG Z, XU P, LIANG D, et al. TRANS-BLSTM: transformer with bidirectional LSTM for language understanding[EB/OL]. [2023-05-11].. |
27 | LI W, QI F, TANG M, et al. Bidirectional LSTM with self-attention mechanism and multi-channel features for sentiment classification[J]. Neurocomputing, 2020, 387: 63-77. |
28 | SYED F, DI SIPIO R, SINERVO P. Bidirectional Long Short-Term Memory (BLSTM) neural networks for reconstruction of top-quark pair decay kinematics[EB/OL]. [2023-05-11].. |
29 | KIM Y. Convolutional neural networks for sentence classification[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1746-1751. |
[1] | Xinran XU, Shaobing ZHANG, Miao CHENG, Yang ZHANG, Shang ZENG. Bearings fault diagnosis method based on multi-pathed hierarchical mixture-of-experts model [J]. Journal of Computer Applications, 2025, 45(1): 59-68. |
[2] | Rui LI, Guanfeng LI, Dezhou HU, Wenxin GAO. Knowledge graph multi-hop reasoning model fusing path and subgraph features [J]. Journal of Computer Applications, 2025, 45(1): 32-39. |
[3] | Xueqiang LYU, Tao WANG, Xindong YOU, Ge XU. HTLR: named entity recognition framework with hierarchical fusion of multi-knowledge [J]. Journal of Computer Applications, 2025, 45(1): 40-47. |
[4] | Zidong CHENG, Peng LI, Feng ZHU. Potential relation mining in internet of things threat intelligence knowledge graph [J]. Journal of Computer Applications, 2025, 45(1): 24-31. |
[5] | Jie WU, Ansi ZHANG, Maodong WU, Yizong ZHANG, Congbao WANG. Overview of research and application of knowledge graph in equipment fault diagnosis [J]. Journal of Computer Applications, 2024, 44(9): 2651-2659. |
[6] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[7] | Yubo ZHAO, Liping ZHANG, Sheng YAN, Min HOU, Mao GAO. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation [J]. Journal of Computer Applications, 2024, 44(8): 2421-2429. |
[8] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. |
[9] | Youren YU, Yangsen ZHANG, Yuru JIANG, Gaijuan HUANG. Chinese named entity recognition model incorporating multi-granularity linguistic knowledge and hierarchical information [J]. Journal of Computer Applications, 2024, 44(6): 1706-1712. |
[10] | Xiaoyan ZHAO, Yan KUANG, Menghan WANG, Peiyan YUAN. Device-to-device content sharing mechanism based on knowledge graph [J]. Journal of Computer Applications, 2024, 44(4): 995-1001. |
[11] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[12] | Linqin WANG, Te ZHANG, Zhihong XU, Yongfeng DONG, Guowei YANG. Fusing entity semantic and structural information for knowledge graph reasoning [J]. Journal of Computer Applications, 2024, 44(11): 3371-3378. |
[13] | Wenjuan JIANG, Yi GUO, Jiaojiao FU. Reasoning question answering model of complex temporal knowledge graph with graph attention [J]. Journal of Computer Applications, 2024, 44(10): 3047-3057. |
[14] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
[15] | Chunlei WANG, Xiao WANG, Kai LIU. Multimodal knowledge graph representation learning: a review [J]. Journal of Computer Applications, 2024, 44(1): 1-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||