Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (3): 690-695.DOI: 10.11772/j.issn.1001-9081.2023040443
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Aiguo SHANG1,2, Xinjuan ZHU1,2()
Received:
2023-04-18
Revised:
2023-06-08
Accepted:
2023-06-09
Online:
2023-12-04
Published:
2024-03-10
Contact:
Xinjuan ZHU
About author:
SHANG Aiguo, born in 1999,M. S. candidate. His research interests include spoken language understanding, natural language processing.
Supported by:
通讯作者:
朱欣娟
作者简介:
尚爱国(1999—),男,陕西西安人,硕士研究生,主要研究方向:口语理解、自然语言处理
基金资助:
CLC Number:
Aiguo SHANG, Xinjuan ZHU. Joint approach of intent detection and slot filling based on multi-task learning[J]. Journal of Computer Applications, 2024, 44(3): 690-695.
尚爱国, 朱欣娟. 基于多任务学习的意图检测和槽位填充联合方法[J]. 《计算机应用》唯一官方网站, 2024, 44(3): 690-695.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023040443
方法 | ATIS | SNIPS | ||||
---|---|---|---|---|---|---|
Slot F1 | Intent acc | Sentence acc | Slot F1 | Intent acc | Sentence acc | |
SF-ID Network | 95.8 | 97.7 | 86.9 | 92.2 | 97.4 | 80.5 |
CAPSULE-NLU | 95.2 | 95.0 | 83.4 | 91.8 | 97.3 | 80.9 |
Attention BiRNN | 94.2 | 91.1 | 78.9 | 87.8 | 96.7 | 74.1 |
Slot-Gated | 94.8 | 93.6 | 82.2 | 88.8 | 97.0 | 75.5 |
Joint BERT | 96.1 | 97.5 | 88.2 | 96.4 | 98.8 | 92.5 |
SASGBC | 96.6 | 98.2 | 91.6 | 96.4 | 98.9 | 92.5 |
IDSFML | 98.5 | 98.4 | 92.4 | 98.0 | 99.3 | 92.4 |
Tab. 1 Experimental result comparison between proposed method and baseline methods
方法 | ATIS | SNIPS | ||||
---|---|---|---|---|---|---|
Slot F1 | Intent acc | Sentence acc | Slot F1 | Intent acc | Sentence acc | |
SF-ID Network | 95.8 | 97.7 | 86.9 | 92.2 | 97.4 | 80.5 |
CAPSULE-NLU | 95.2 | 95.0 | 83.4 | 91.8 | 97.3 | 80.9 |
Attention BiRNN | 94.2 | 91.1 | 78.9 | 87.8 | 96.7 | 74.1 |
Slot-Gated | 94.8 | 93.6 | 82.2 | 88.8 | 97.0 | 75.5 |
Joint BERT | 96.1 | 97.5 | 88.2 | 96.4 | 98.8 | 92.5 |
SASGBC | 96.6 | 98.2 | 91.6 | 96.4 | 98.9 | 92.5 |
IDSFML | 98.5 | 98.4 | 92.4 | 98.0 | 99.3 | 92.4 |
测试输入 | IDSFML | Joint BERT | ||
---|---|---|---|---|
Intent | Slots | Intent | Slots | |
list flights from dallas to houston arriving sunday afternoon | flights | O,O,O,B-fromloc.city_name,O, B-toloc.city_name,O,B-arrive_date.day_name, B-arrive_time.period_of_day | flights | O,O,O,B-fromloc.city_name,O, B-toloc.city_name,O, B-arrive_date.day_name,B-arrive_time.time |
Please help me list california airports | airport | O,O,O,O,B-state_name,O | airport | O,O,O,O, B-city_name,O |
Tab. 2 Case test results
测试输入 | IDSFML | Joint BERT | ||
---|---|---|---|---|
Intent | Slots | Intent | Slots | |
list flights from dallas to houston arriving sunday afternoon | flights | O,O,O,B-fromloc.city_name,O, B-toloc.city_name,O,B-arrive_date.day_name, B-arrive_time.period_of_day | flights | O,O,O,B-fromloc.city_name,O, B-toloc.city_name,O, B-arrive_date.day_name,B-arrive_time.time |
Please help me list california airports | airport | O,O,O,O,B-state_name,O | airport | O,O,O,O, B-city_name,O |
方法 | ATIS | SNIPS | ||||
---|---|---|---|---|---|---|
Slot F1 | Intent acc | Sentence acc | Slot F1 | Intent acc | Sentence acc | |
IDSFML-CRF | 97.7 | 97.9 | 92.1 | 97.2 | 99.1 | 92.0 |
IDSFML-AEA | 96.9 | 98.1 | 91.4 | 96.7 | 98.9 | 91.6 |
IDSFML-SD | 97.9 | 98.0 | 91.9 | 97.8 | 99.0 | 91.7 |
IDSFML | 98.5 | 98.4 | 92.4 | 98.0 | 99.3 | 92.4 |
Tab. 3 Results of ablation experiments
方法 | ATIS | SNIPS | ||||
---|---|---|---|---|---|---|
Slot F1 | Intent acc | Sentence acc | Slot F1 | Intent acc | Sentence acc | |
IDSFML-CRF | 97.7 | 97.9 | 92.1 | 97.2 | 99.1 | 92.0 |
IDSFML-AEA | 96.9 | 98.1 | 91.4 | 96.7 | 98.9 | 91.6 |
IDSFML-SD | 97.9 | 98.0 | 91.9 | 97.8 | 99.0 | 91.7 |
IDSFML | 98.5 | 98.4 | 92.4 | 98.0 | 99.3 | 92.4 |
1 | C-W GOO, GAO G, HSU Y-K, et al. Slot-gated modeling for joint slot filling and intent prediction [C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers). Stroudsburg: ACL, 2018: 753-757. 10.18653/v1/n18-2118 |
2 | BALDOMERO-NARANJO M, MARTINEZ-MERINO L I, RODRÍGUEZ-CHIA A M. A robust SVM-based approach with feature selection and outliers detection for classification problems[J]. Expert Systems with Applications, 2021, 178: 115017. 10.1016/j.eswa.2021.115017 |
3 | SPEISER J L, MILLER M E, TOOZE J, et al. A comparison of random forest variable selection methods for classification prediction modeling [J]. Expert Systems with Applications, 2019, 134: 93-101. 10.1016/j.eswa.2019.05.028 |
4 | FERNÁNDEZ-MARTÍNEZ F, GRIOL D, CALLEJAS Z, et al. An approach to intent detection and classification based on attentive recurrent neural networks [C]// Proceedings of the 2021 Interspeech. Grenoble: International Speech Communication Association, 2021: 46-50. 10.21437/iberspeech.2021-10 |
5 | KUYUMCU B, AKSAKALLI C, DELIL S. An automated new approach in fast text classification (FastText): a case study for Turkish text classification without pre-processing [C]// Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval. New York: ACM, 2019: 1-4. 10.1145/3342827.3342828 |
6 | DENG Q, SÖFFKER D. A review of the current HMM-based approaches of driving behaviors recognition and prediction [J]. IEEE Transactions on Intelligent Vehicles, 2022,1(7):21-31. |
7 | LIU S, HE T, DAI J. A survey of CRF algorithm based knowledge extraction of elementary mathematics in Chinese [J]. Mobile Networks and Applications, 2021, 26: 1891-1903. 10.1007/s11036-020-01725-x |
8 | LINDEMANN B, MASCHLER B, SAHLAB N, et al. A survey on anomaly detection for technical systems using LSTM networks [J]. Computers in Industry, 2021, 131: 103498. 10.1016/j.compind.2021.103498 |
9 | DEVLIN J, CHANG M-W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [EB/OL]. [2023-04-23].. 10.18653/v1/n18-2 |
10 | CHEN Y-N, HAKANNI-TÜR D, TUR G, et al. Syntax or semantics? Knowledge-guided joint semantic frame parsing [C]// Proceedings of the 2016 IEEE Spoken Language Technology Workshop. Piscataway: IEEE, 2016: 348-355. 10.1109/slt.2016.7846288 |
11 | WANG W, SUN D. The improved AdaBoost algorithms for imbalanced data classification [J]. Information Sciences, 2021, 563: 358-374. 10.1016/j.ins.2021.03.042 |
12 | 刘睿珩,叶霞,岳增营.面向自然语言处理任务的预训练模型综述[J].计算机应用,2021,41(5):1236-1246. |
LIU R H, YE X, YUE Z Y. Review of pre-trained models for natural language processing tasks [J]. Journal of Computer Applications, 2021,41(5):1236-1246. | |
13 | DEORAS A, SARIKAYA R. Deep belief network based semantic taggers for spoken language understanding [C]// Proceedings of the Interspeech 2013. Lyon: ISCA, 2013: 2713-2717. 10.21437/interspeech.2013-623 |
14 | YAO K, PENG B, ZWEIG G, et al. Recurrent conditional random field for language understanding [C]// Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2014: 4077-4081. 10.1109/icassp.2014.6854368 |
15 | MESNIL G, HE X, DENG L, et al. Investigation of recurrent-neural-network architectures and learning methods for spoken language understanding [C]// Proceedings of the 2013 Interspeech. Grenoble: International Speech Communication Association, 2013: 3771-3775. 10.21437/interspeech.2013-596 |
16 | CHEN P-C, CHI T-C, SU S-Y, et al. Dynamic time-aware attention to speaker roles and contexts for spoken language understanding [C]// Proceedings of the 2017 IEEE Automatic Speech Recognition and Understanding Workshop. Piscataway: IEEE, 2017: 554-560. 10.1109/asru.2017.8268985 |
17 | ZUGARINI A, MORVAN J, MELACCI S, et al. Combining deep learning and symbolic processing for extracting knowledge from raw text [C]// Proceedings of the 2018 International Conference on Artificial Neural Networks in Pattern Recognition: 8th IAPR TC3 Workshop. Cham: Springer, 2018: 90-101. 10.1007/978-3-319-99978-4_7 |
18 | GUO D, TUR G, W-T YIH, et al. Joint semantic utterance classification and slot filling with recursive neural networks [C]// Proceedings of the 2014 IEEE Spoken Language Technology Workshop. Piscataway: IEEE, 2014: 554-559. 10.1109/slt.2014.7078634 |
19 | XU P, SARIKAYA R. Convolutional neural network based triangular CRF for joint intent detection and slot filling [C]// Proceedings of the 2013 IEEE Workshop on Automatic Speech Recognition and Understanding. Piscataway: IEEE, 2013: 78-83. 10.1109/asru.2013.6707709 |
20 | LIU B, LANE I. Attention-based recurrent neural network models for joint intent detection and slot filling [C]// Proceedings of the 2016 Interspeech. Grenoble: International Speech Communication Association, 2016: 685-689. 10.21437/interspeech.2016-1352 |
21 | LI C, LI L, QI J. A self-attentive model with gate mechanism for spoken language understanding [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 3824-3833. 10.18653/v1/d18-1417 |
22 | ZHANG C, LI Y, DU N, et al. Joint slot filling and intent detection via capsule neural networks [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 5259-5267. 10.18653/v1/p19-1519 |
23 | CHEN Q, ZHUO Z, WANG W. BERT for joint intent classification and slot filling [EB/OL]. (2019-02-28) [2023-04-23]. . |
24 | E H, NIU P, CHEN Z, et al. A novel bi-directional interrelated model for joint intent detection and slot filling [C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 5467-5471. 10.18653/v1/p19-1544 |
25 | QIN L, CHE W, LI Y, et al. A stack-propagation framework with token-level intent detection for spoken language understanding[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 2078-2087. 10.18653/v1/d19-1214 |
26 | HUI Y, WANG J, CHENG N, et al. Joint intent detection and slot filling based on continual learning model [C]// Proceedings of the 2021 International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 7643-7647. 10.1109/icassp39728.2021.9413360 |
27 | GUO Y, XIE Z, CHEN X, et al. AWTE-BERT: attending to wordpiece tokenization explicitly on BERT for joint intent classification and slot filling [EB/OL]. (2023-02-02) [2023-04-13]. . |
28 | COUCKE A, SAADE A, BALL A, et al. Snips voice platform: an embedded spoken language understanding system for private-by-design voice interfaces [EB/OL]. (2018-11-06) [2023-04-13]. . 10.1109/emc2-nips53020.2019.00021 |
29 | MA Z, SUN B, LI S. A two-stage selective fusion framework for joint intent detection and slot filling [J]. IEEE Transactions on Neural Networks and Learning Systems, 2022 (Early Access):1-12. 10.1109/tnnls.2022.3202562 |
30 | WANG C, HUANG Z, HU M. SASGBC: improving sequence labeling performance for joint learning of slot filling and intent detection [C]// Proceedings of the 2020 6th International Conference on Computing and Data Engineering. New York: ACM, 2020: 29-33. 10.1145/3379247.3379266 |
31 | OpenAI. GPT-4 Technical Report [EB/OL]. (2023-03-27) [2023-04-13]. . |
[1] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[4] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[5] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[6] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[7] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[8] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[9] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[10] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[11] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[12] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[14] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[15] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||