Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (4): 1065-1071.DOI: 10.11772/j.issn.1001-9081.2023040533
Special Issue: 人工智能
• Advanced computing • Previous Articles Next Articles
Received:2023-05-06
															
							
																	Revised:2023-07-20
															
							
																	Accepted:2023-07-24
															
							
							
																	Online:2024-04-22
															
							
																	Published:2024-04-10
															
							
						Contact:
								Yan ZHU   
													About author:WANG Haihan, born in 1999, M. S. candidate. His research interests include natural language processing.Supported by:通讯作者:
					朱焱
							作者简介:王海涵(1999—),男,山东潍坊人,硕士研究生,主要研究方向:自然语言处理基金资助:CLC Number:
Haihan WANG, Yan ZHU. Offensive speech detection with irony mechanism[J]. Journal of Computer Applications, 2024, 44(4): 1065-1071.
王海涵, 朱焱. 融合反讽机制的攻击性言论检测[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1065-1071.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023040533
| 数据集 | 训练集样本数 | 测试集样本数 | 总样本数 | 
|---|---|---|---|
| OLID | 13 240 | 860 | 14 100 | 
| HateBase | 19 826 | 4 957 | 24 783 | 
| HateXplain | 16 118 | 4 030 | 20 148 | 
| Implicit Hate Corpus | 17 184 | 4 296 | 21 480 | 
| HatEval-2019 | 9 000 | 1 000 | 10 000 | 
Tab. 1 Dataset statistics
| 数据集 | 训练集样本数 | 测试集样本数 | 总样本数 | 
|---|---|---|---|
| OLID | 13 240 | 860 | 14 100 | 
| HateBase | 19 826 | 4 957 | 24 783 | 
| HateXplain | 16 118 | 4 030 | 20 148 | 
| Implicit Hate Corpus | 17 184 | 4 296 | 21 480 | 
| HatEval-2019 | 9 000 | 1 000 | 10 000 | 
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BiLSTM | 82.09 | 78.12 | 75.47 | 76.48 | 
| BiCHAT | 83.49 | 81.61 | 75.14 | 77.39 | 
| HN-ATT | 82.79 | 79.32 | 76.19 | 78.69 | 
| SKS | 83.72 | 77.22 | 80.68 | 78.62 | 
| SMSD | 83.72 | 80.90 | 77.13 | 78.69 | 
| BERT | 84.67 | 83.67 | 79.02 | 80.83 | 
| HateBERT | 85.50 | 83.08 | 79.45 | 80.94 | 
| BSWD | 87.35 | 85.48 | 81.79 | 83.48 | 
Tab. 2 Experimental results of different models on OLID dataset
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BiLSTM | 82.09 | 78.12 | 75.47 | 76.48 | 
| BiCHAT | 83.49 | 81.61 | 75.14 | 77.39 | 
| HN-ATT | 82.79 | 79.32 | 76.19 | 78.69 | 
| SKS | 83.72 | 77.22 | 80.68 | 78.62 | 
| SMSD | 83.72 | 80.90 | 77.13 | 78.69 | 
| BERT | 84.67 | 83.67 | 79.02 | 80.83 | 
| HateBERT | 85.50 | 83.08 | 79.45 | 80.94 | 
| BSWD | 87.35 | 85.48 | 81.79 | 83.48 | 
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BiLSTM | 94.14 | 89.69 | 89.77 | 89.73 | 
| BiCHAT | 94.90 | 90.22 | 92.26 | 91.19 | 
| HN-ATT | 95.25 | 91.07 | 92.48 | 91.75 | 
| SKS | 94.86 | 94.45 | 89.14 | 91.49 | 
| SMSD | 95.27 | 90.37 | 93.37 | 91.77 | 
| BERT | 96.71 | 93.22 | 93.26 | 93.24 | 
| HateBERT | 95.99 | 92.63 | 93.00 | 92.82 | 
| BSWD | 97.12 | 94.83 | 94.68 | 94.75 | 
Tab. 3 Experimental results of different models on HateBase dataset
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BiLSTM | 94.14 | 89.69 | 89.77 | 89.73 | 
| BiCHAT | 94.90 | 90.22 | 92.26 | 91.19 | 
| HN-ATT | 95.25 | 91.07 | 92.48 | 91.75 | 
| SKS | 94.86 | 94.45 | 89.14 | 91.49 | 
| SMSD | 95.27 | 90.37 | 93.37 | 91.77 | 
| BERT | 96.71 | 93.22 | 93.26 | 93.24 | 
| HateBERT | 95.99 | 92.63 | 93.00 | 92.82 | 
| BSWD | 97.12 | 94.83 | 94.68 | 94.75 | 
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BiLSTM | 71.96 | 71.94 | 72.42 | 71.84 | 
| BiCHAT | 72.51 | 72.27 | 72.72 | 72.28 | 
| HN-ATT | 73.99 | 73.49 | 73.73 | 73.57 | 
| SKS | 74.27 | 74.50 | 74.02 | 74.05 | 
| SMSD | 74.17 | 73.61 | 73.54 | 73.59 | 
| BERT | 76.01 | 75.57 | 75.08 | 75.27 | 
| HateBERT | 75.20 | 75.27 | 75.30 | 75.29 | 
| BSWD | 78.58 | 78.16 | 77.94 | 78.04 | 
Tab. 4 Experimental results of different models on HateXplain dataset
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BiLSTM | 71.96 | 71.94 | 72.42 | 71.84 | 
| BiCHAT | 72.51 | 72.27 | 72.72 | 72.28 | 
| HN-ATT | 73.99 | 73.49 | 73.73 | 73.57 | 
| SKS | 74.27 | 74.50 | 74.02 | 74.05 | 
| SMSD | 74.17 | 73.61 | 73.54 | 73.59 | 
| BERT | 76.01 | 75.57 | 75.08 | 75.27 | 
| HateBERT | 75.20 | 75.27 | 75.30 | 75.29 | 
| BSWD | 78.58 | 78.16 | 77.94 | 78.04 | 
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BiLSTM | 72.95 | 72.94 | 73.44 | 72.80 | 
| BiCHAT | 74.09 | 73.98 | 72.47 | 72.81 | 
| HN-ATT | 74.54 | 74.01 | 73.71 | 73.83 | 
| SKS | 75.88 | 74.21 | 74.69 | 74.42 | 
| SMSD | 74.61 | 74.09 | 74.26 | 74.16 | 
| BERT | 76.18 | 74.79 | 73.97 | 74.30 | 
| HateBERT | 75.29 | 75.07 | 75.16 | 75.11 | 
| BSWD | 78.45 | 77.33 | 76.53 | 76.87 | 
Tab. 5 Experimental results of different models on Implicit Hate Corpus dataset
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BiLSTM | 72.95 | 72.94 | 73.44 | 72.80 | 
| BiCHAT | 74.09 | 73.98 | 72.47 | 72.81 | 
| HN-ATT | 74.54 | 74.01 | 73.71 | 73.83 | 
| SKS | 75.88 | 74.21 | 74.69 | 74.42 | 
| SMSD | 74.61 | 74.09 | 74.26 | 74.16 | 
| BERT | 76.18 | 74.79 | 73.97 | 74.30 | 
| HateBERT | 75.29 | 75.07 | 75.16 | 75.11 | 
| BSWD | 78.45 | 77.33 | 76.53 | 76.87 | 
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BiLSTM | 71.00 | 70.88 | 71.32 | 70.80 | 
| BiCHAT | 72.40 | 72.08 | 70.81 | 71.10 | 
| HN-ATT | 71.90 | 71.42 | 71.72 | 71.51 | 
| SKS | 71.10 | 70.90 | 70.62 | 70.70 | 
| SMSD | 73.20 | 72.63 | 72.74 | 72.68 | 
| BERT | 76.18 | 74.79 | 73.97 | 74.30 | 
| HateBERT | 74.80 | 74.56 | 74.51 | 74.53 | 
| BSWD | 78.25 | 77.55 | 78.03 | 77.65 | 
Tab. 6 Experimental results of different models on HatEval-2019 dataset
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BiLSTM | 71.00 | 70.88 | 71.32 | 70.80 | 
| BiCHAT | 72.40 | 72.08 | 70.81 | 71.10 | 
| HN-ATT | 71.90 | 71.42 | 71.72 | 71.51 | 
| SKS | 71.10 | 70.90 | 70.62 | 70.70 | 
| SMSD | 73.20 | 72.63 | 72.74 | 72.68 | 
| BERT | 76.18 | 74.79 | 73.97 | 74.30 | 
| HateBERT | 74.80 | 74.56 | 74.51 | 74.53 | 
| BSWD | 78.25 | 77.55 | 78.03 | 77.65 | 
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BERT | 84.67 | 83.67 | 79.02 | 80.83 | 
| WordsDetect | 86.64 | 84.52 | 81.15 | 82.57 | 
| Sarcasm-BERT | 86.90 | 85.57 | 80.54 | 82.51 | 
| BSWD | 87.35 | 85.48 | 81.79 | 83.48 | 
Tab. 7 Ablation experiment results on OLID dataset
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BERT | 84.67 | 83.67 | 79.02 | 80.83 | 
| WordsDetect | 86.64 | 84.52 | 81.15 | 82.57 | 
| Sarcasm-BERT | 86.90 | 85.57 | 80.54 | 82.51 | 
| BSWD | 87.35 | 85.48 | 81.79 | 83.48 | 
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BERT | 96.71 | 93.22 | 93.26 | 93.24 | 
| WordsDetect | 96.84 | 93.79 | 94.66 | 94.22 | 
| Sarcasm-BERT | 96.89 | 94.77 | 94.08 | 94.42 | 
| BSWD | 97.12 | 94.83 | 94.68 | 94.75 | 
Tab. 8 Ablation experiment results on HateBase dataset
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BERT | 96.71 | 93.22 | 93.26 | 93.24 | 
| WordsDetect | 96.84 | 93.79 | 94.66 | 94.22 | 
| Sarcasm-BERT | 96.89 | 94.77 | 94.08 | 94.42 | 
| BSWD | 97.12 | 94.83 | 94.68 | 94.75 | 
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BERT | 76.01 | 75.57 | 75.08 | 75.27 | 
| WordsDetect | 78.01 | 77.56 | 77.40 | 77.47 | 
| Sarcasm-BERT | 78.06 | 77.63 | 77.38 | 77.49 | 
| BSWD | 78.58 | 78.16 | 77.94 | 78.04 | 
Tab. 9 Ablation experiment results on HateXplain dataset
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BERT | 76.01 | 75.57 | 75.08 | 75.27 | 
| WordsDetect | 78.01 | 77.56 | 77.40 | 77.47 | 
| Sarcasm-BERT | 78.06 | 77.63 | 77.38 | 77.49 | 
| BSWD | 78.58 | 78.16 | 77.94 | 78.04 | 
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BERT | 76.18 | 74.79 | 73.97 | 74.30 | 
| WordsDetect | 77.80 | 76.58 | 75.68 | 76.05 | 
| Sarcasm-BERT | 78.08 | 76.84 | 76.49 | 76.65 | 
| BSWD | 78.45 | 77.33 | 76.53 | 76.87 | 
Tab. 10 Ablation experiment results on Implicit Hate Corpus dataset
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BERT | 76.18 | 74.79 | 73.97 | 74.30 | 
| WordsDetect | 77.80 | 76.58 | 75.68 | 76.05 | 
| Sarcasm-BERT | 78.08 | 76.84 | 76.49 | 76.65 | 
| BSWD | 78.45 | 77.33 | 76.53 | 76.87 | 
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BERT | 76.18 | 74.79 | 73.97 | 74.30 | 
| WordsDetect | 76.66 | 76.93 | 77.39 | 77.04 | 
| Sarcasm-BERT | 78.04 | 76.84 | 77.34 | 76.95 | 
| BSWD | 78.25 | 77.55 | 78.03 | 77.65 | 
Tab. 11 Ablation experiment results on HatEval-2019 dataset
| 模型 | ACC | P | R | Macro-F1 | 
|---|---|---|---|---|
| BERT | 76.18 | 74.79 | 73.97 | 74.30 | 
| WordsDetect | 76.66 | 76.93 | 77.39 | 77.04 | 
| Sarcasm-BERT | 78.04 | 76.84 | 77.34 | 76.95 | 
| BSWD | 78.25 | 77.55 | 78.03 | 77.65 | 
| 1 | LEE H-S, LEE H-R, J-U PARK, et al. An abusive text detection system based on enhanced abusive and non-abusive word lists[J]. Decision Support Systems, 2018, 113: 22-31. 10.1016/j.dss.2018.06.009 | 
| 2 | LEE J-H, J-U PARK, J-W CHA, et al. Detecting context abusiveness using hierarchical deep learning[C]// Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda. Stroudsburg: ACL, 2019: 10-19. 10.18653/v1/d19-5002 | 
| 3 | WANG K, LU D, HAN C, et al. Detect all abuse! Toward universal abusive language detection models[C]// Proceedings of the 28th International Conference on Computational Linguistics. Barcelona: International Committee on Computational Linguistics, 2020: 6366-6376. 10.18653/v1/2020.coling-main.560 | 
| 4 | WIEGAND M, RUPPENHOFER J, KLEINBAUER T. Detection of abusive language: the problem of biased datasets[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 602-608. | 
| 5 | ELSHERIEF M, ZIEMS C, MUCHLINSKI D, et al. Latent hatred: a benchmark for understanding implicit hate speech[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 345-363. 10.18653/v1/2021.emnlp-main.29 | 
| 6 | CASELLI T, BASILE V, MITROVIĆ J, et al. I feel offended, don’t be abusive! Implicit/explicit messages in offensive and abusive language[C]// Proceedings of the 12th Language Resources and Evaluation Conference. Paris: Eruopean Language Resources Association, 2020: 6193-6202. 10.18653/v1/2021.woah-1.3 | 
| 7 | ARANGO A, PÉREZ J, POBLETE B. Hate speech detection is not as easy as you may think: a closer look at model validation[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 45-54. 10.1145/3331184.3331262 | 
| 8 | YIN W, ZUBIAGA A. Towards generalisable hate speech detection: a review on obstacles and solutions[J]. PeerJ Computer Science, 2021, 7: e598. 10.7717/peerj-cs.598 | 
| 9 | DEVLIN J, CHANG M-W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. 10.18653/v1/n18-2 | 
| 10 | CHAKRABARTY T, GUPTA K, MURESAN S. Pay “attention” to your context when classifying abusive language[C]// Proceedings of the Third Workshop on Abusive Language Online. Stroudsburg: ACL, 2019: 70-79. 10.18653/v1/w19-3508 | 
| 11 | RODRÍGUEZ-SÁNCHEZ F, CARRILLO-DE-ALBORNOZ J, PLAZA L. Automatic classification of sexism in social networks: an empirical study on twitter data[J]. IEEE Access, 2020, 8: 219563-219576. 10.1109/access.2020.3042604 | 
| 12 | KAPIL P, EKBAL A. A deep neural network based multi-task learning approach to hate speech detection[J]. Knowledge-Based Systems, 2020, 210: 106458. 10.1016/j.knosys.2020.106458 | 
| 13 | ZHOU Y, YANG Y, LIU H, et al. Deep learning based fusion approach for hate speech detection[J]. IEEE Access, 2020, 8: 128923-128929. 10.1109/access.2020.3009244 | 
| 14 | WULLACH T, ADLER A, MINKOV E. Towards hate speech detection at large via deep generative modeling[J]. IEEE Internet Computing, 2021, 25(2): 48-57. 10.1109/mic.2020.3033161 | 
| 15 | ZHOU X, YONG Y, FAN X, et al. Hate speech detection based on sentiment knowledge sharing[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 7158-7166. 10.18653/v1/2021.acl-long.556 | 
| 16 | FORTUNA P, SOLER-COMPANY J, WANNER L. How well do hate speech, toxicity, abusive and offensive language classification models generalize across datasets? [J]. Information Processing & Management, 2021, 58(3): 102524. 10.1016/j.ipm.2021.102524 | 
| 17 | KHAN S, KAMAL A, FAZIL M, et al. HCovBi-Caps: hate speech detection using convolutional and bi-directional gated recurrent unit with Capsule network[J]. IEEE Access, 2022, 10: 7881-7894. 10.1109/access.2022.3143799 | 
| 18 | KHAN S, FAZIL M, SEJWAL V K, et al. BiCHAT: BiLSTM with deep CNN and hierarchical attention for hate speech detection[J]. Journal of King Saud University — Computer and Information Sciences, 2022, 34(7): 4335-4344. 10.1016/j.jksuci.2022.05.006 | 
| 19 | GROLMAN E, BINYAMINI H, SHABTAI A, et al. HateVersarial: adversarial attack against hate speech detection algorithms on twitter[C]// Proceedings of the 30th ACM Conference on User Modeling, Adaption and Personalization. New York: ACM, 2022: 143-152. 10.1145/3503252.3531309 | 
| 20 | LI J, NING Y. Anti-asian hate speech detection via data augmented semantic relation inference[C]// Proceedings of the Sixteenth International AAAI Conference on Web and Social Media. Palo Alto: AAAI Press, 2022: 607-617. 10.1609/icwsm.v16i1.19319 | 
| 21 | KIM Y, PARK S, HAN Y-S. Generalizable implicit hate speech detection using contrastive learning[C]// Proceedings of the 29th International Conference on Computational Linguistics. [S.l.]: International Committee on Computational Linguistics, 2022: 6667-6679. 10.18653/v1/2023.findings-emnlp.731 | 
| 22 | WIEGAND M, RUPPENHOFER J, SCHMIDT A, et al. Inducing a lexicon of abusive words — a feature-based approach[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg: ACL, 2018: 1046-1056. 10.18653/v1/n18-1095 | 
| 23 | ZAMPIERI M, MALMASI S, NAKOV P, et al. Predicting the type and target of offensive posts in social media[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 1415-1420. 10.18653/v1/n19-1144 | 
| 24 | DAVIDSON T, WARMSLEY D, MACY M, et al. Automated hate speech detection and the problem of offensive language[C]// Proceedings of the Eleventh International AAAI Conference on Web and Social Media. Palo Alto: AAAI Press, 2017: 512-515. 10.1609/icwsm.v11i1.14955 | 
| 25 | MATHEW B, SAHA P, YIMAM S M, et al. HateXplain: a benchmark dataset for explainable hate speech detection[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 14867-14875. 10.1609/aaai.v35i17.17745 | 
| 26 | YANG Z, YANG D, DYER C, et al. Hierarchical attention networks for document classification[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2016: 1480-1489. 10.18653/v1/n16-1174 | 
| 27 | XIONG T, ZHANG P, ZHU H, et al. Sarcasm detection with self-matching networks and low-rank bilinear pooling[C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2115-2124. 10.1145/3308558.3313735 | 
| 28 | CASELLI T, BASILE V, MITROVIĆ J, et al. HateBERT: retraining BERT for abusive language detection in English[C]// Proceedings of the 5th Workshop on Online Abuse and Harms Stroudsburg: ACL, 2021: 17-25. 10.18653/v1/2021.woah-1.3 | 
| [1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. | 
| [2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. | 
| [3] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. | 
| [4] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. | 
| [5] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. | 
| [6] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. | 
| [7] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. | 
| [8] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. | 
| [9] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. | 
| [10] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. | 
| [11] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. | 
| [12] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. | 
| [13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. | 
| [14] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. | 
| [15] | Yan ZHOU, Yang LI. Rectified cross pseudo supervision method with attention mechanism for stroke lesion segmentation [J]. Journal of Computer Applications, 2024, 44(6): 1942-1948. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
