1 |
FOWLER M J. Microvascular and macrovascular complications of diabetes [J]. Clinical Diabetes, 2008, 26(2): 77-82.
|
2 |
RAHMAN M, ISLAM D, MUKTI R J, et al. A deep learning approach based on convolutional LSTM for detecting diabetes[J]. Computational Biology and Chemistry, 2020, 88: No.107329.
|
3 |
SUN H, SAEEDI P, KARURANGA S, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Research and Clinical Practice, 2022, 183: No.109119.
|
4 |
刘月姣.《中国居民营养与慢性病状况报告(2020年)》发布[J]. 农产品市场, 2021,(2):58-59.
|
5 |
HASAN M K, ALEEF T A, ROY S. Automatic mass classification in breast using transfer learning of deep convolutional neural network and support vector machine[C]// Proceedings of the 2020 IEEE Region 10 Symposium. Piscataway: IEEE, 2020: 110-113.
|
6 |
BIAU G, SCORNET E. A random forest guided tour[J]. TEST, 2016, 25(2): 197-227.
|
7 |
SONG Y Y, LU Y. Decision tree methods: applications for classification and prediction[J]. Shanghai Archives of Psychiatry, 2015, 27(2): 130-135.
|
8 |
ISLAM M M F, FERDOUSI R, RAHMAN S, et al. Likelihood prediction of diabetes at early stage using data mining techniques[C]// Proceedings of the 2019 International Symposium on Computer Vision and Machine Intelligence in Medical Image Analysis, AISC 992. Singapore: Springer, 2020:113-125.
|
9 |
HASAN M K, ALAM M A, DAS D, et al. Diabetes prediction using ensembling of different machine learning classifiers[J]. IEEE Access, 2020, 8: 76516-76531.
|
10 |
RALLAPALL S, SURYAKANTHI T. Predicting the risk of diabetes in big data electronic health records by using scalable random forest classification algorithm[C]// Proceedings of the 2016 International Conference on Advances in Computing and Communication Engineering. Piscataway: IEEE, 2016:281-284.
|
11 |
PHAM T, TRAN T, PHUNG D, et al. Predicting healthcare trajectories from medical records: a deep learning approach[J]. Journal of Biomedical Informatics, 2017, 69: 218-229.
|
12 |
ALEX S A, NAYAHI J J V, SHINE H, et al. Deep convolutional neural network for diabetes mellitus prediction[J]. Neural Computing and Applications, 2022, 34(2): 1319-1327.
|
13 |
ARIK S O, PFISTER T. TabNet: attentive interpretable tabular learning [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021:6679-6687.
|
14 |
ZOU Q, QU K, LUO Y, et al. Predicting diabetes mellitus with machine learning techniques[J]. Frontiers in Genetics, 2018, 9: No.515.
|
15 |
YASAR A. Data classification of early-stage diabetes risk prediction datasets and analysis of algorithm performance using feature extraction methods and machine learning techniques [J]. International Journal of Intelligent Systems and Applications in Engineering, 2021, 9(4): 273-281.
|
16 |
HOFFER E, HUBARA I, SOUDRY D. Train longer, generalize better: closing the generalization gap in large batch training of neural networks[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017:1729-1739.
|
17 |
MARTINS A F T, ASTUDILLO R F. From softmax to sparsemax: a sparse model of attention and multi-label classification[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 1614-1623.
|
18 |
DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional network [C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017:933-941.
|
19 |
GEHRING J, AULI M, GRANGIER D, et al. Convolutional sequence to sequence learning[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017:1243-1252.
|
20 |
BROWN G, POCOCK A, ZHAO M J, et al. Conditional likelihood maximisation: a unifying framework for information theoretic feature selection [J]. Journal of Machine Learning Research, 2012, 13:27-66.
|
21 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017:2999-3007.
|
22 |
GRANDVALET Y, BEBGIO Y. Semi-supervised learning by entropy minimization [C]// Proceedings of the 17th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2004:529-536.
|
23 |
SAMEEN M I, PRADHAN B, LEE S. Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment [J]. CATENA, 2020, 186: No.104249.
|
24 |
ABBASIMEHR H, PAKI R. Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization[J]. Chaos, Solitons and Fractals, 2021, 142: No.110511.
|
25 |
高媛媛,余振华,杜方,等. 基于贝叶斯优化的无标签网络剪枝算法[J]. 计算机应用, 2023, 43(1): 30-36.
|
26 |
KHAN S, ALOTAIBI R M. A novel thresholding for prediction analytics with machine learning techniques [J]. International Journal of Computer Science and Network Security, 2023, 23(1):33-40.
|
27 |
张汇洋,刘瑞银. 交叉验证法在模型比较中的应用[J]. 应用数学进展, 2023, 12(4): 1866-1873.
|