Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (3): 996-1002.DOI: 10.11772/j.issn.1001-9081.2024030359
• Multimedia computing and computer simulation • Previous Articles Next Articles
Zhanjun JIANG, Yang LI(), Jing LIAN, Xinfa MIAO
Received:
2024-04-01
Revised:
2024-06-04
Accepted:
2024-06-11
Online:
2024-10-12
Published:
2025-03-10
Contact:
Yang LI
About author:
JIANG Zhanjun, born in 1975, Ph. D., professor. His research interests include digital image processing, future mobile communication.Supported by:
通讯作者:
李洋
作者简介:
蒋占军(1975—),男,宁夏中卫人,教授,博士,主要研究方向:数字图像处理、未来移动通信基金资助:
CLC Number:
Zhanjun JIANG, Yang LI, Jing LIAN, Xinfa MIAO. Coordinate enhancement and multi-source sampling for brain tumor image segmentation[J]. Journal of Computer Applications, 2025, 45(3): 996-1002.
蒋占军, 李洋, 廉敬, 苗新法. 坐标增强与多源采样的脑肿瘤图像分割[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 996-1002.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024030359
分类 | NET | ED | ET |
---|---|---|---|
WT | √ | √ | √ |
TC | √ | √ | |
ET | √ |
Tab. 1 Three types of labels containing lesion areas
分类 | NET | ED | ET |
---|---|---|---|
WT | √ | √ | √ |
TC | √ | √ | |
ET | √ |
标签 | 模型 | mDice | mIoU | mAP | mPrecision | mRecall |
---|---|---|---|---|---|---|
WT | DeepLabV3+ | 63.96 | 55.39 | 65.28 | 54.37 | 62.30 |
U-Net3+ | 69.36 | 62.21 | 70.46 | 62.27 | 67.83 | |
AttentionUNet | 78.01 | 74.92 | 73.09 | 79.11 | 71.68 | |
SwinUNet | 84.18 | 79.81 | 82.59 | 85.23 | 82.61 | |
TransUNet | 86.71 | 83.24 | 87.29 | 89.41 | 87.13 | |
本文模型 | 91.51 | 89.47 | 90.25 | 92.63 | 90.41 | |
TC | DeepLabV3+ | 59.31 | 51.14 | 55.27 | 50.34 | 52.78 |
U-Net3+ | 59.91 | 54.74 | 62.06 | 55.72 | 62.28 | |
AttentionUNet | 78.92 | 64.38 | 63.56 | 66.36 | 63.47 | |
SwinUNet | 75.84 | 74.66 | 73.15 | 75.34 | 76.83 | |
TransUNet | 79.42 | 76.98 | 78.09 | 80.43 | 80.16 | |
本文模型 | 83.11 | 83.17 | 83.41 | 82.58 | 81.37 | |
ET | DeepLabV3+ | 49.22 | 42.48 | 61.55 | 43.12 | 54.54 |
U-Net3+ | 52.88 | 54.76 | 53.84 | 50.31 | 57.73 | |
AttentionUNet | 62.87 | 61.01 | 63.17 | 60.34 | 64.95 | |
SwinUNet | 69.63 | 64.03 | 68.31 | 73.13 | 70.64 | |
TransUNet | 71.39 | 66.83 | 72.15 | 75.45 | 73.52 | |
本文模型 | 77.42 | 76.03 | 75.37 | 77.25 | 78.49 |
Tab. 2 Segmentation experimental results of different models on BraTS dataset
标签 | 模型 | mDice | mIoU | mAP | mPrecision | mRecall |
---|---|---|---|---|---|---|
WT | DeepLabV3+ | 63.96 | 55.39 | 65.28 | 54.37 | 62.30 |
U-Net3+ | 69.36 | 62.21 | 70.46 | 62.27 | 67.83 | |
AttentionUNet | 78.01 | 74.92 | 73.09 | 79.11 | 71.68 | |
SwinUNet | 84.18 | 79.81 | 82.59 | 85.23 | 82.61 | |
TransUNet | 86.71 | 83.24 | 87.29 | 89.41 | 87.13 | |
本文模型 | 91.51 | 89.47 | 90.25 | 92.63 | 90.41 | |
TC | DeepLabV3+ | 59.31 | 51.14 | 55.27 | 50.34 | 52.78 |
U-Net3+ | 59.91 | 54.74 | 62.06 | 55.72 | 62.28 | |
AttentionUNet | 78.92 | 64.38 | 63.56 | 66.36 | 63.47 | |
SwinUNet | 75.84 | 74.66 | 73.15 | 75.34 | 76.83 | |
TransUNet | 79.42 | 76.98 | 78.09 | 80.43 | 80.16 | |
本文模型 | 83.11 | 83.17 | 83.41 | 82.58 | 81.37 | |
ET | DeepLabV3+ | 49.22 | 42.48 | 61.55 | 43.12 | 54.54 |
U-Net3+ | 52.88 | 54.76 | 53.84 | 50.31 | 57.73 | |
AttentionUNet | 62.87 | 61.01 | 63.17 | 60.34 | 64.95 | |
SwinUNet | 69.63 | 64.03 | 68.31 | 73.13 | 70.64 | |
TransUNet | 71.39 | 66.83 | 72.15 | 75.45 | 73.52 | |
本文模型 | 77.42 | 76.03 | 75.37 | 77.25 | 78.49 |
模型 | mDice | mIoU | mAP | mPrecision | mRecall |
---|---|---|---|---|---|
DeepLabV3+ | 72.14 | 69.77 | 73.31 | 74.56 | 73.36 |
U-Net3+ | 76.12 | 70.91 | 74.34 | 76.26 | 77.67 |
AttentionUNet | 83.25 | 81.48 | 83.39 | 82.76 | 87.57 |
SwinUNet | 89.69 | 84.23 | 87.16 | 88.03 | 89.41 |
TransUNet | 90.08 | 87.47 | 89.20 | 90.45 | 91.82 |
本文模型 | 93.63 | 90.65 | 93.36 | 93.91 | 92.45 |
Tab. 3 Segmentation experimental results of different models on Kaggle_3m dataset
模型 | mDice | mIoU | mAP | mPrecision | mRecall |
---|---|---|---|---|---|
DeepLabV3+ | 72.14 | 69.77 | 73.31 | 74.56 | 73.36 |
U-Net3+ | 76.12 | 70.91 | 74.34 | 76.26 | 77.67 |
AttentionUNet | 83.25 | 81.48 | 83.39 | 82.76 | 87.57 |
SwinUNet | 89.69 | 84.23 | 87.16 | 88.03 | 89.41 |
TransUNet | 90.08 | 87.47 | 89.20 | 90.45 | 91.82 |
本文模型 | 93.63 | 90.65 | 93.36 | 93.91 | 92.45 |
结构 | 模型大小/MB | mDice/% | mIoU/% | mAP/% | mPrecision/% | mRecall/% |
---|---|---|---|---|---|---|
(a) | 125.714 512 | 78.25 | 73.59 | 76.80 | 77.99 | 72.90 |
(b) | 138.151 416 | 80.12 | 76.55 | 81.51 | 82.53 | 80.17 |
(c) | 174.437 261 | 80.98 | 75.45 | 77.90 | 80.23 | 80.07 |
Tab. 4 Comparison of experimental results of different enhanced learning structures
结构 | 模型大小/MB | mDice/% | mIoU/% | mAP/% | mPrecision/% | mRecall/% |
---|---|---|---|---|---|---|
(a) | 125.714 512 | 78.25 | 73.59 | 76.80 | 77.99 | 72.90 |
(b) | 138.151 416 | 80.12 | 76.55 | 81.51 | 82.53 | 80.17 |
(c) | 174.437 261 | 80.98 | 75.45 | 77.90 | 80.23 | 80.07 |
采样方式 | 采样次数 | 模型大小/MB | mDice/% | mIoU/% | mAP/% | mPrecision/% | mRecall/% |
---|---|---|---|---|---|---|---|
Self Attention | 12 | 138.151 416 | 80.12 | 76.55 | 81.51 | 82.53 | 80.17 |
Deformable Attention | 12 | 114.073 432 | 73.16 | 68.35 | 71.74 | 66.20 | 67.82 |
本文方法 | 11 | 135.285 914 | 80.70 | 78.32 | 81.02 | 82.44 | 80.06 |
10 | 132.709 619 | 81.43 | 79.06 | 81.29 | 83.20 | 81.24 | |
9 | 129.158 172 | 81.56 | 81.38 | 81.71 | 84.27 | 82.16 | |
8 | 126.265 402 | 81.85 | 81.57 | 81.68 | 84.47 | 82.40 | |
7 | 124.602 914 | 80.03 | 80.84 | 79.85 | 80.51 | 79.21 |
Tab. 5 Comparison of experimental results of different sampling methods
采样方式 | 采样次数 | 模型大小/MB | mDice/% | mIoU/% | mAP/% | mPrecision/% | mRecall/% |
---|---|---|---|---|---|---|---|
Self Attention | 12 | 138.151 416 | 80.12 | 76.55 | 81.51 | 82.53 | 80.17 |
Deformable Attention | 12 | 114.073 432 | 73.16 | 68.35 | 71.74 | 66.20 | 67.82 |
本文方法 | 11 | 135.285 914 | 80.70 | 78.32 | 81.02 | 82.44 | 80.06 |
10 | 132.709 619 | 81.43 | 79.06 | 81.29 | 83.20 | 81.24 | |
9 | 129.158 172 | 81.56 | 81.38 | 81.71 | 84.27 | 82.16 | |
8 | 126.265 402 | 81.85 | 81.57 | 81.68 | 84.47 | 82.40 | |
7 | 124.602 914 | 80.03 | 80.84 | 79.85 | 80.51 | 79.21 |
CEL | DBS | ILF | 模型大小/MB | mDice/% | mIoU/% | mAP/% | mPrecision/% | mRecall/% |
---|---|---|---|---|---|---|---|---|
— | — | — | 112.220 080 | 79.17 | 75.68 | 79.18 | 81.76 | 80.27 |
√ | — | — | 138.151 416 | 80.12 | 76.55 | 81.51 | 82.53 | 80.17 |
√ | √ | — | 126.265 402 | 81.85 | 81.57 | 81.68 | 84.47 | 82.40 |
√ | √ | √ | 95.276 356 | 84.01 | 82.89 | 83.01 | 84.15 | 83.42 |
Tab. 6 Comparison of overall improvement experimental results
CEL | DBS | ILF | 模型大小/MB | mDice/% | mIoU/% | mAP/% | mPrecision/% | mRecall/% |
---|---|---|---|---|---|---|---|---|
— | — | — | 112.220 080 | 79.17 | 75.68 | 79.18 | 81.76 | 80.27 |
√ | — | — | 138.151 416 | 80.12 | 76.55 | 81.51 | 82.53 | 80.17 |
√ | √ | — | 126.265 402 | 81.85 | 81.57 | 81.68 | 84.47 | 82.40 |
√ | √ | √ | 95.276 356 | 84.01 | 82.89 | 83.01 | 84.15 | 83.42 |
1 | Global Burden of Disease Cancer Collaboration. Global regional and national cancer incidence mortality years of life lost years lived with disability and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study [J]. JAMA Oncology, 2017, 3(4):524-548. |
2 | WANG Y, JI Y, XIAO H. A data augmentation method for fully automatic brain tumor segmentation [J]. Computers in Biology and Medicine, 2022, 149: No.106039. |
3 | LIU Z, TONG L, CHEN L, et al. Deep learning based brain tumor segmentation: a survey [J]. Complex and Intelligent Systems, 2023, 9: 1001-1026. |
4 | BERGER L, EOIN H, CARDOSO, M J, et al. An adaptive sampling scheme to efficiently train fully convolutional networks for semantic segmentation [C]// Proceedings of the 2018 Annual Conference on Medical Image Understanding and Analysis, CCIS 894. Cham: Springer, 2018: 277-286. |
5 | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
6 | ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation [C]// Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis and 8th International Workshop on Multimodal Learning for Clinical Decision Support, LNCS 11045. Cham: Springer, 2018: 3-11. |
7 | HUANG H, LIN L, TONG R, et al. UNet 3+: a full-scale connected UNet for medical image segmentation [C]// Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 1055-1059. |
8 | KONG X, SUN G, WU Q, et al. Hybrid pyramid U-Net model for brain tumor segmentation [C]// Proceedings of the 2018 International Conference on Intelligent Information Processing, IFIPAICT 538. Cham: Springer, 2018: 346-355. |
9 | ZHANG M, LIU G, TINA J, et al. Improved U-Net with multi-scale cross connection and dilated convolution for brain tumor segmentation [C]// Proceedings of the 2019 International Conference on Medical Imaging Physics and Engineering. Piscataway: IEEE, 2019: 1-5. |
10 | 艾玲梅,李天东,廖福元,等. 基于注意力U-Net的脑肿瘤磁共振图像分割[J]. 激光与光电子学进展, 2020, 57(14): No.141030. |
AI L M, LI T D, LIAO F Y, et al. Magnetic resonance brain tumor image segmentation based on attention U-Net [J]. Lasers and Optoelectronics Progress, 2020, 57(14): No.141030. | |
11 | CAO H, WANG Y, CHEN J, et al. Swin-UNet: UNet-like pure Transformer for medical image segmentation [C]// Proceedings of the 2023 European Conference on Computer Vision Workshops, LNCS 13803. Cham: Springer, 2023: 205-218. |
12 | 王浩宇,朱文韬,肖刚,等. 基于TransUNet和残差结构的脑肿瘤图像分割方法[J]. 中国体视学与图像分析, 2023, 28(1): 98-107. |
WANG H Y, ZHU W T, XIAO G, et al. Research on brain tumor segmentation by optimizing a TransUNet based algorithm [J]. Chinese Journal of Somatology and Image Analysis, 2023, 28(1): 98-107. | |
13 | WU M, YE H L, WU Y, et al. Brain tumor image segmentation based on grouped convolution [J]. Journal of Physics: Conference Series, 2022, 2278: No.012042. |
14 | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717. |
15 | ZHU X, SU W, LU L, et al. Deformable DETR: deformable Transformers for end-to-end object detection [EB/OL]. [2024-03-10]. . |
16 | LIU T, ZHAO Y, WEI Y, et al. Concealed object detection for activate millimeter wave image [J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9909-9917. |
17 | FAN T, WANG G, LI Y, et al. MA-Net: a multi-scale attention network for liver and tumor segmentation [J]. IEEE Access, 2020, 8: 179656-179665. |
18 | ZHANG Q L, YANG Y B. SA-Net: shuffle attention for deep convolutional neural networks [C]// Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 2235-2239. |
19 | YUAN S, QIU Z, LI P, et al. RMAU-Net: breast tumor segmentation network based on residual depthwise separable convolution and multiscale channel attention gates [J]. Applied Sciences, 2023, 13(20): No.11362. |
20 | PETRELLA J R, PROVENZALE J M. MR perfusion imaging of the brain: techniques and applications [J]. American Journal of Roentgenology, 2000, 175(1): 207-219. |
21 | CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 833-851. |
22 | ZUO Q, CHEN S, WANG Z. R2AU-Net: attention recurrent residual convolutional neural network for multimodal medical image segmentation [J]. Security and Communication Networks, 2021, 2021: No.6625688. |
[1] | Baohua YUAN, Jialu CHEN, Huan WANG. Medical image segmentation network integrating multi-scale semantics and parallel double-branch [J]. Journal of Computer Applications, 2025, 45(3): 988-995. |
[2] | Lijun XU, Hui LI, Zuyang LIU, Kansong CHEN, Weixuan MA. 3D-GA-Unet: MRI image segmentation algorithm for glioma based on 3D-Ghost CNN [J]. Journal of Computer Applications, 2024, 44(4): 1294-1302. |
[3] | Cong GU, Qiqiang DUAN, Siyu REN. Polyp segmentation algorithm based on context-aware network [J]. Journal of Computer Applications, 2024, 44(11): 3617-3622. |
[4] | Jun LIANG, Zehong HONG, Songsen YU. Image segmentation model based on improved particle swarm optimization algorithm and genetic mutation [J]. Journal of Computer Applications, 2023, 43(6): 1743-1749. |
[5] | Liyao FU, Mengxiao YIN, Feng YANG. Transformer based U-shaped medical image segmentation network: a survey [J]. Journal of Computer Applications, 2023, 43(5): 1584-1595. |
[6] | Donglei LAN, Xiaodong WANG, Yu YAO, Xin WANG, Jitao ZHOU. Rectal cancer segmentation network based on adjacent slice attention fusion [J]. Journal of Computer Applications, 2023, 43(12): 3918-3926. |
[7] | Meng DOU, Zhebin CHEN, Xin WANG, Jitao ZHOU, Yu YAO. Review of multi-modal medical image segmentation based on deep learning [J]. Journal of Computer Applications, 2023, 43(11): 3385-3395. |
[8] | LIN Jianzhuang, YANG Wenzhong, TAN Sixiang, ZHOU Lexin, CHEN Danni. Fusing filter enhancement and reverse attention network for polyp segmentation [J]. Journal of Computer Applications, 2023, 43(1): 265-272. |
[9] | Guangzhu XU, Wenjie LIN, Sha CHEN, Wan KUANG, Bangjun LEI, Jun ZHOU. Fundus vessel segmentation method based on U-Net and pulse coupled neural network with adaptive threshold [J]. Journal of Computer Applications, 2022, 42(3): 825-832. |
[10] | Hong LI, Junying ZOU, Xicheng TAN, Guiyang LI. Multi-attention fusion network for medical image segmentation [J]. Journal of Computer Applications, 2022, 42(12): 3891-3899. |
[11] | YANG Rui, QIAN Xiaojun, SUN Zhenqiang, XU Zhen. Hybrid aerial image segmentation algorithm based on multi-region feature fusion for natural scene [J]. Journal of Computer Applications, 2021, 41(8): 2445-2452. |
[12] | CAO Yuhong, XU Hai, LIU Sun'ao, WANG Zixiao, LI Hongliang. Review of deep learning-based medical image segmentation [J]. Journal of Computer Applications, 2021, 41(8): 2273-2287. |
[13] | HUANG Li, LU Long. Segmentation of ischemic stroke lesion based on long-distance dependency encoding and deep residual U-Net [J]. Journal of Computer Applications, 2021, 41(6): 1820-1827. |
[14] | SHEN Xuewen, WANG Xiaodong, YAO Yu. Spatial frequency divided attention network for ultrasound image segmentation [J]. Journal of Computer Applications, 2021, 41(6): 1828-1835. |
[15] | LUO Qin, WANG Yan. Image segmentation model without initial contour [J]. Journal of Computer Applications, 2021, 41(4): 1179-1183. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||