Journal of Computer Applications ›› 0, Vol. ›› Issue (): 72-78.DOI: 10.11772/j.issn.1001-9081.2024040484
• Artificial intelligence • Previous Articles Next Articles
Haigang JIANG1(), Min ZHU2, Xiaoqiang JIANG3
Received:
2024-04-23
Revised:
2024-07-09
Accepted:
2024-07-10
Online:
2025-01-24
Published:
2024-12-31
Contact:
Haigang JIANG
通讯作者:
蒋海刚
作者简介:
蒋海刚(1975—),男,江苏宜兴人,高级工程师,CCF会员,主要研究方向:机器学习、非结构化数据处理、设备故障诊断基金资助:
CLC Number:
Haigang JIANG, Min ZHU, Xiaoqiang JIANG. Device fault diagnosis method based on knowledge graph and multi-task learning[J]. Journal of Computer Applications, 0, (): 72-78.
蒋海刚, 朱敏, 蒋小强. 基于知识图谱和多任务学习的设备故障诊断方法[J]. 《计算机应用》唯一官方网站, 0, (): 72-78.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024040484
特征 | 本文方法 | 传统方法 |
---|---|---|
数据依赖性 | 利用元学习,在小样本情况下初始化训练症状关联模型,减少对大量标注数据的依赖 | 需要大量标注数据进行训练 |
模型泛化能力 | 结合自训练和协同训练等策略,利用未标注数据迭代优化模型参数, 不断提高模型的泛化能力 | 模型泛化能力取决于训练数据的质量和数量 |
数据扩增 | 融入基于规则的数据扩增思路,根据领域知识构造更多潜在的症状组合样本, 进一步增强模型的泛化能力 | 通常不考虑数据扩增策略 |
知识共享和传递 | 构建了2个初始视角不同的基础模型,并使用Boosting和Bagging等策略训练这2个 模型,得到2个专家模型,实现知识的共享和传递,提高整体的预测性能 | 通常只使用单个模型,不考虑知识共享和传递 |
特征 | 本文方法 | 传统方法 |
---|---|---|
数据依赖性 | 利用元学习,在小样本情况下初始化训练症状关联模型,减少对大量标注数据的依赖 | 需要大量标注数据进行训练 |
模型泛化能力 | 结合自训练和协同训练等策略,利用未标注数据迭代优化模型参数, 不断提高模型的泛化能力 | 模型泛化能力取决于训练数据的质量和数量 |
数据扩增 | 融入基于规则的数据扩增思路,根据领域知识构造更多潜在的症状组合样本, 进一步增强模型的泛化能力 | 通常不考虑数据扩增策略 |
知识共享和传递 | 构建了2个初始视角不同的基础模型,并使用Boosting和Bagging等策略训练这2个 模型,得到2个专家模型,实现知识的共享和传递,提高整体的预测性能 | 通常只使用单个模型,不考虑知识共享和传递 |
方法 | 标注数据量 | 方法 | 标注数据量 |
---|---|---|---|
支持向量机 | 5 500 | 逻辑回归 | 2 700 |
随机森林 | 3 200 | 本文方法 | 200 |
决策树 | 2 100 |
方法 | 标注数据量 | 方法 | 标注数据量 |
---|---|---|---|
支持向量机 | 5 500 | 逻辑回归 | 2 700 |
随机森林 | 3 200 | 本文方法 | 200 |
决策树 | 2 100 |
方法 | 准确率 | 精确率 | 召回率 | F1值 |
---|---|---|---|---|
支持向量机 | 0.85 | 0.82 | 0.88 | 0.85 |
随机森林 | 0.90 | 0.88 | 0.91 | 0.89 |
决策树 | 0.82 | 0.80 | 0.84 | 0.82 |
逻辑回归 | 0.78 | 0.76 | 0.80 | 0.78 |
本文方法 | 0.88 | 0.86 | 0.90 | 0.88 |
方法 | 准确率 | 精确率 | 召回率 | F1值 |
---|---|---|---|---|
支持向量机 | 0.85 | 0.82 | 0.88 | 0.85 |
随机森林 | 0.90 | 0.88 | 0.91 | 0.89 |
决策树 | 0.82 | 0.80 | 0.84 | 0.82 |
逻辑回归 | 0.78 | 0.76 | 0.80 | 0.78 |
本文方法 | 0.88 | 0.86 | 0.90 | 0.88 |
设备类型 | 报警情况 | 推荐处理流程 |
---|---|---|
空调箱 | 高压报警 | 1.检查压缩机; 2.检查冷凝器风扇; 3.检查高低压保护装置 |
空调箱 | 低压报警 | 1.检查蒸发器风扇; 2.检查室外环境温度; 3.检查制冷剂填充量 |
中央空调 | 频繁启停 | 1.检查温控器设置; 2.检查过滤网阻塞; 3.检查室内外温差 |
中央空调 | 排水故障 | 1.清理排水管道; 2.检查排水泵; 3.检查冷凝水盘位置 |
设备类型 | 报警情况 | 推荐处理流程 |
---|---|---|
空调箱 | 高压报警 | 1.检查压缩机; 2.检查冷凝器风扇; 3.检查高低压保护装置 |
空调箱 | 低压报警 | 1.检查蒸发器风扇; 2.检查室外环境温度; 3.检查制冷剂填充量 |
中央空调 | 频繁启停 | 1.检查温控器设置; 2.检查过滤网阻塞; 3.检查室内外温差 |
中央空调 | 排水故障 | 1.清理排水管道; 2.检查排水泵; 3.检查冷凝水盘位置 |
评估场景 | 评估指标 | 指标说明 |
---|---|---|
故障诊断性能评估 | 诊断准确率(Diagnosis Accuracy, DA) | 正确诊断的故障数/总故障数 |
平均诊断时间(Average Diagnosis Time, ADT) | 所有故障诊断时间之和/总故障数 | |
交互式诊断效果评估 | 问题理解准确率(Question Understanding Accuracy, QUA) | 正确理解的问题数/总问题数 |
知识图谱匹配召回率(Knowledge Graph Matching Recall, KGMR) | 成功匹配知识图谱的问题数/总问题数 | |
答案生成准确率(Answer Generation Accuracy, AGA) | 生成正确答案的问题数/总问题数 | |
多轮交互成功率(Multi-turn Interaction Success Rate, MISR) | 多轮交互成功的问题数/需多轮交互的问题总数 |
评估场景 | 评估指标 | 指标说明 |
---|---|---|
故障诊断性能评估 | 诊断准确率(Diagnosis Accuracy, DA) | 正确诊断的故障数/总故障数 |
平均诊断时间(Average Diagnosis Time, ADT) | 所有故障诊断时间之和/总故障数 | |
交互式诊断效果评估 | 问题理解准确率(Question Understanding Accuracy, QUA) | 正确理解的问题数/总问题数 |
知识图谱匹配召回率(Knowledge Graph Matching Recall, KGMR) | 成功匹配知识图谱的问题数/总问题数 | |
答案生成准确率(Answer Generation Accuracy, AGA) | 生成正确答案的问题数/总问题数 | |
多轮交互成功率(Multi-turn Interaction Success Rate, MISR) | 多轮交互成功的问题数/需多轮交互的问题总数 |
方法 | 平均每条记录 诊断时间 | 方法 | 平均每条记录 诊断时间 |
---|---|---|---|
随机森林 | 18.5 | LSTM网络 | 10.0 |
支持向量机 | 15.5 | GCN | 8.7 |
贝叶斯网络 | 19.0 | 本文方法 | 6.5 |
方法 | 平均每条记录 诊断时间 | 方法 | 平均每条记录 诊断时间 |
---|---|---|---|
随机森林 | 18.5 | LSTM网络 | 10.0 |
支持向量机 | 15.5 | GCN | 8.7 |
贝叶斯网络 | 19.0 | 本文方法 | 6.5 |
1 | 陈晓宇,贾琨,张振国,等. 基于元数据的建筑机电系统智能运维[J]. 建筑科学, 2023, 39(10): 144-149. |
2 | 胡振中,冷烁,袁爽. 基于BIM和数据驱动的智能运维管理方法[J]. 清华大学学报(自然科学版), 2022, 62(2): 199-207. |
3 | 魏伟,赵小强,范亮亮. 基于DBN-HD的车载设备故障诊断[J]. 振动、测试与诊断, 2023, 43(2):363-370, 414. |
4 | CHEN X, AN Z, HUANG L, et al. Surface defect detection of electric power equipment in substation based on improved YOLOV4 algorithm[C]// Proceedings of the 10th International Conference on Power and Energy Systems. Piscataway: IEEE, 2020: 256-261. |
5 | LI Q, FENG B, TANG X, et al. MuLAN: multi-level attention-enhanced matching network for few-shot knowledge graph completion[J]. Neural Networks, 2024, 174: No.106222. |
6 | 卞嘉楠,冒泽慧,姜斌,等. 基于知识图谱和多任务学习的工业生产关键设备故障诊断方法[J]. 中国科学:信息科学, 2023, 53(4):699-714. |
7 | 肖发龙,吴岳忠,沈雪豪,等. 基于深度学习和知识图谱的变电站设备故障智能诊断[J]. 电力建设, 2022, 43(3): 66-74. |
8 | 赵振兵,王睿,赵文清,等. 基于图知识推理的输电线路缺销螺栓识别方法[J]. 智能系统学报, 2023, 18(2): 372-380. |
9 | CAO X, SHI Y, YU H, et al. DEKR: description enhanced knowledge graph for machine learning method recommendation[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 203-212. |
10 | LI C, WANG B. A knowledge graph method towards power system fault diagnosis and classification[J]. Electronics, 2023, 12(23): No.4808. |
11 | SAUTER D, BOUKHOBZA T, AUBRUN C. Data-based Fault diagnosis using causality graph models derived from Transfer Entropy Computation[J]. IFAC-PapersOnLine, 2023, 56(2): 2921-2926. |
12 | 喻波,王志海,孙亚东,等. 非结构化文档敏感数据识别与异常行为分析[J]. 智能系统学报, 2021, 16(5): 931-939. |
13 | 黄金杰,赵轩伟,张昕尧,等. 基于领域知识图谱的短文本实体链接[J]. 计算机工程与应用, 2022, 58(1): 165-174. |
14 | 曾宇涛,林谢雄,靳小龙,等. 基于多维信息融合的知识库问答实体链接[J]. 模式识别与人工智能, 2019, 32(7): 642-651. |
15 | SAXENA A, CHAKRABARTI S, TALUKDAR P. Question answering over temporal knowledge graphs[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 6663-6676. |
16 | 蒋汶娟,过弋,付娇娇. 融合图注意力的复杂时序知识图谱推理问答模型[J]. 计算机应用, 2024, 44(10): 3047-3057. |
17 | 梁书晴,蒋运承. 基于元路径的图Transformer神经网络[J]. 计算机系统应用, 2022, 31(11): 1-9. |
18 | LIN Z, HU Z, PENG J, et al. Dynamic-scale graph neural network for fault detection[J]. Process Safety and Environmental Protection, 2022, 168: 953-970. |
19 | LV M, LI Y, LIANG H, et al. A spatial-temporal variational graph attention autoencoder using interactive information for fault detection in complex industrial processes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(3): 3062-3076. |
20 | LI J, LIN M, LI Y, et al. Transfer learning with limited labeled data for fault diagnosis in nuclear power plants[J]. Nuclear Engineering and Design, 2022, 390: No.111690. |
21 | REN H, LESKOVEC J. Beta embeddings for multi-hop logical reasoning in knowledge graphs[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 19716-19726. |
22 | YANG B, WAN F, LIU C, et al. Part-based semantic transform for few-shot semantic segmentation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12): 7141-7152. |
23 | YAO J, LU B, WENG C. Bearing fault diagnosis using fast temporal graph convolutional networks[C]// Proceedings of the 2021 Global Reliability and Prognostics and Health Management. Piscataway: IEEE, 2021: 1-6. |
24 | KHORRAM A, KHALOOEI M, REZGHI M. End-to-end CNN + LSTM deep learning approach for bearing fault diagnosis[J]. Applied Intelligence, 2021, 51(2): 736-751. |
25 | GAO Z, CECATI C, DING S X. A survey of fault diagnosis and fault-tolerant techniques - part I: fault diagnosis with model-based and signal-based approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3757-3767. |
26 | LI Z, LI Z, GU F. Intelligent diagnosis method for machine faults based on federated transfer learning[J]. Applied Soft Computing, 2024,163: No.111922. |
27 | KUCULO T. Comprehensive event representations using event knowledge graphs and natural language processing[C]// Companion Proceedings of the Web Conference 2022. New York: ACM,2022: 359-363. |
28 | MADANI N, JOSEPH K, SRIHARI R K. Domain specific question answering over knowledge graphs using logical programming and large language models[EB/OL]. [2023-08-23].. |
29 | LIU H, WANG S, CHEN C, et al. Few-shot knowledge graph relational reasoning via subgraph adaptation[C]// Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). Stroudsburg: ACL, 2024: 3346-3356. |
30 | 夏子芳,于亚新,王子腾,等. 融合协同知识图谱与反事实推理的可解释推荐机制[J]. 计算机应用, 2023, 43(7): 2001-2009. |
31 | QI T, WU F, WU C, et al. Personalized news recommendation with knowledge-aware interactive matching[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 61-70. |
[1] | Sheping ZHAI, Qing YANG, Yan HUANG, Rui YANG. Knowledge graph completion using hierarchical attention fusing directed relationships and relational paths [J]. Journal of Computer Applications, 2025, 45(4): 1148-1156. |
[2] | Liqin WANG, Zhilei GENG, Yingshuang LI, Yongfeng DONG, Meng BIAN. Open-world knowledge reasoning model based on path and enhanced triplet text [J]. Journal of Computer Applications, 2025, 45(4): 1177-1183. |
[3] | Weichao DANG, Chujun SONG, Gaimei GAO, Chunxia LIU. Multi-behavior recommendation based on cascading residual graph convolutional network [J]. Journal of Computer Applications, 2025, 45(4): 1223-1231. |
[4] | Zixin XU, Xiuwen YI, Jie BAO, Tianrui LI, Junbo ZHANG, Yu ZHENG. Construction and application of knowledge graph for epidemiological investigation [J]. Journal of Computer Applications, 2025, 45(4): 1340-1348. |
[5] | Chun XU, Shuangyan JI, Huan MA, Enwei SUN, Mengmeng WANG, Mingyu SU. Consultation recommendation method based on knowledge graph and dialogue structure [J]. Journal of Computer Applications, 2025, 45(4): 1157-1168. |
[6] | Xuefei ZHANG, Liping ZHANG, Sheng YAN, Min HOU, Yubo ZHAO. Personalized learning recommendation in collaboration of knowledge graph and large language model [J]. Journal of Computer Applications, 2025, 45(3): 773-784. |
[7] | Yan YANG, Feng YE, Dong XU, Xuejie ZHANG, Jin XU. Construction of digital twin water conservancy knowledge graph integrating large language model and prompt learning [J]. Journal of Computer Applications, 2025, 45(3): 785-793. |
[8] | Chengzhe YUAN, Guohua CHEN, Dingding LI, Yuan ZHU, Ronghua LIN, Hao ZHONG, Yong TANG. ScholatGPT: a large language model for academic social networks and its intelligent applications [J]. Journal of Computer Applications, 2025, 45(3): 755-764. |
[9] | Meng WANG, Daqian ZHANG, Bingyan ZHOU, Qianying MA, Jidong LYU. Fault diagnosis method for train control on-board interface equipment of CTCS-3 based on temporal knowledge graph completion [J]. Journal of Computer Applications, 2025, 45(2): 677-684. |
[10] | Zidong CHENG, Peng LI, Feng ZHU. Potential relation mining in internet of things threat intelligence knowledge graph [J]. Journal of Computer Applications, 2025, 45(1): 24-31. |
[11] | Xinran XU, Shaobing ZHANG, Miao CHENG, Yang ZHANG, Shang ZENG. Bearings fault diagnosis method based on multi-pathed hierarchical mixture-of-experts model [J]. Journal of Computer Applications, 2025, 45(1): 59-68. |
[12] | Rui LI, Guanfeng LI, Dezhou HU, Wenxin GAO. Knowledge graph multi-hop reasoning model fusing path and subgraph features [J]. Journal of Computer Applications, 2025, 45(1): 32-39. |
[13] | Xueqiang LYU, Tao WANG, Xindong YOU, Ge XU. HTLR: named entity recognition framework with hierarchical fusion of multi-knowledge [J]. Journal of Computer Applications, 2025, 45(1): 40-47. |
[14] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[15] | Jie WU, Ansi ZHANG, Maodong WU, Yizong ZHANG, Congbao WANG. Overview of research and application of knowledge graph in equipment fault diagnosis [J]. Journal of Computer Applications, 2024, 44(9): 2651-2659. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||