Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (4): 1177-1183.DOI: 10.11772/j.issn.1001-9081.2024030265
• Artificial intelligence • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                                                    Liqin WANG1,2,3, Zhilei GENG1, Yingshuang LI4( ), Yongfeng DONG1,2,3, Meng BIAN5
), Yongfeng DONG1,2,3, Meng BIAN5
												  
						
						
						
					
				
Received:2024-03-13
															
							
																	Revised:2024-04-19
															
							
																	Accepted:2024-04-22
															
							
							
																	Online:2024-07-01
															
							
																	Published:2025-04-10
															
							
						Contact:
								Yingshuang LI   
													About author:WANG Liqin, born in 1980, Ph. D., senior experimentalist. Her research interests include intelligent information processing, knowledge graph.Supported by:
        
                   
            王利琴1,2,3, 耿智雷1, 李英双4( ), 董永峰1,2,3, 边萌5
), 董永峰1,2,3, 边萌5
                  
        
        
        
        
    
通讯作者:
					李英双
							作者简介:王利琴(1980—),女,河北张北人,高级实验师,博士,CCF会员,主要研究方向:智能信息处理、知识图谱;基金资助:CLC Number:
Liqin WANG, Zhilei GENG, Yingshuang LI, Yongfeng DONG, Meng BIAN. Open-world knowledge reasoning model based on path and enhanced triplet text[J]. Journal of Computer Applications, 2025, 45(4): 1177-1183.
王利琴, 耿智雷, 李英双, 董永峰, 边萌. 基于路径和增强三元组文本的开放世界知识推理模型[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1177-1183.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024030265
| 版本 | 划分 | WN18RR | FB15k-237 | NELL-995 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| #R | #E | #TR1 | #TR2 | #R | #E | #TR1 | #TR2 | #R | #E | #TR1 | #TR2 | ||
| V1 | 训练集 | 9 | 2 746 | 5 410 | 630 | 183 | 2 000 | 4 245 | 489 | 14 | 10 915 | 4 687 | 414 | 
| 测试集 | 9 | 922 | 1 618 | 188 | 146 | 1 500 | 1 993 | 205 | 14 | 225 | 833 | 100 | |
| V2 | 训练集 | 10 | 6 954 | 15 262 | 1 838 | 203 | 3 000 | 9 739 | 1 166 | 88 | 2 564 | 8 219 | 922 | 
| 测试集 | 10 | 2 923 | 4 011 | 441 | 176 | 2 000 | 4 145 | 478 | 79 | 4 937 | 4 586 | 476 | |
| V3 | 训练集 | 11 | 12 078 | 25 901 | 3 097 | 218 | 4 000 | 17 986 | 2 194 | 142 | 4 647 | 16 393 | 1 851 | 
| 测试集 | 11 | 5 084 | 6 320 | 605 | 187 | 3 000 | 7 406 | 865 | 122 | 4 921 | 8 048 | 809 | |
| V4 | 训练集 | 9 | 3 861 | 7 940 | 934 | 222 | 5 000 | 27 203 | 3 352 | 14 | 10 915 | 4 687 | 414 | 
| 测试集 | 9 | 7 208 | 12 334 | 1 429 | 204 | 3 500 | 11 714 | 1 424 | 14 | 225 | 833 | 100 | |
Tab. 1 Statistics of different datasets
| 版本 | 划分 | WN18RR | FB15k-237 | NELL-995 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| #R | #E | #TR1 | #TR2 | #R | #E | #TR1 | #TR2 | #R | #E | #TR1 | #TR2 | ||
| V1 | 训练集 | 9 | 2 746 | 5 410 | 630 | 183 | 2 000 | 4 245 | 489 | 14 | 10 915 | 4 687 | 414 | 
| 测试集 | 9 | 922 | 1 618 | 188 | 146 | 1 500 | 1 993 | 205 | 14 | 225 | 833 | 100 | |
| V2 | 训练集 | 10 | 6 954 | 15 262 | 1 838 | 203 | 3 000 | 9 739 | 1 166 | 88 | 2 564 | 8 219 | 922 | 
| 测试集 | 10 | 2 923 | 4 011 | 441 | 176 | 2 000 | 4 145 | 478 | 79 | 4 937 | 4 586 | 476 | |
| V3 | 训练集 | 11 | 12 078 | 25 901 | 3 097 | 218 | 4 000 | 17 986 | 2 194 | 142 | 4 647 | 16 393 | 1 851 | 
| 测试集 | 11 | 5 084 | 6 320 | 605 | 187 | 3 000 | 7 406 | 865 | 122 | 4 921 | 8 048 | 809 | |
| V4 | 训练集 | 9 | 3 861 | 7 940 | 934 | 222 | 5 000 | 27 203 | 3 352 | 14 | 10 915 | 4 687 | 414 | 
| 测试集 | 9 | 7 208 | 12 334 | 1 429 | 204 | 3 500 | 11 714 | 1 424 | 14 | 225 | 833 | 100 | |
| 模型 | WN18RR | FB15k-237 | NELL-995 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| V1 | V2 | V3 | V4 | 平均值 | V1 | V2 | V3 | V4 | 平均值 | V1 | V2 | V3 | V4 | 平均值 | |
| RuleN | 90.2 | 89.0 | 76.4 | 85.7 | 85.8 | 75.2 | 88.7 | 91.2 | 91.7 | 86.7 | 84.9 | 88.4 | 87.2 | 80.5 | 85.2 | 
| Neural LP | 86.0 | 83.7 | 62.9 | 82.0 | 78.6 | 69.6 | 76.5 | 73.9 | 75.7 | 73.9 | 64.6 | 83.6 | 87.5 | 85.6 | 80.3 | 
| DRUM | 86.0 | 84.0 | 63.2 | 82.0 | 78.3 | 69.7 | 76.4 | 74.0 | 76.2 | 74.0 | 59.8 | 83.9 | 87.7 | 85.9 | 79.3 | 
| GraIL | 94.3 | 94.1 | 85.8 | 92.7 | 91.7 | 84.6 | 90.5 | 91.6 | 94.4 | 90.2 | 86.0 | 92.6 | 93.3 | 87.5 | 89.8 | 
| ConGLR | 85.6 | 92.3 | 93.9 | 91.7 | |||||||||||
| KG-BERT | 85.7 | 93.0 | 83.2 | 88.1 | 87.5 | 76.3 | 90.8 | 81.5 | 87.7 | 84.0 | 53.6 | 77.4 | 83.7 | 69.1 | 71.0 | 
| BERTRL | 96.9 | 98.2 | 92.3 | 98.9 | 96.5 | 92.8 | 81.8 | 94.4 | 95.4 | 87.5 | 89.7 | ||||
| PEOR | 99.6 | 99.7 | 95.8 | 99.9 | 98.7 | 93.7 | 96.9 | 96.8 | 98.6 | 96.5 | 90.0 | 96.6 | 97.8 | 92.4 | 94.7 | 
Tab. 2 Comparison results of different models (AUC-PR)
| 模型 | WN18RR | FB15k-237 | NELL-995 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| V1 | V2 | V3 | V4 | 平均值 | V1 | V2 | V3 | V4 | 平均值 | V1 | V2 | V3 | V4 | 平均值 | |
| RuleN | 90.2 | 89.0 | 76.4 | 85.7 | 85.8 | 75.2 | 88.7 | 91.2 | 91.7 | 86.7 | 84.9 | 88.4 | 87.2 | 80.5 | 85.2 | 
| Neural LP | 86.0 | 83.7 | 62.9 | 82.0 | 78.6 | 69.6 | 76.5 | 73.9 | 75.7 | 73.9 | 64.6 | 83.6 | 87.5 | 85.6 | 80.3 | 
| DRUM | 86.0 | 84.0 | 63.2 | 82.0 | 78.3 | 69.7 | 76.4 | 74.0 | 76.2 | 74.0 | 59.8 | 83.9 | 87.7 | 85.9 | 79.3 | 
| GraIL | 94.3 | 94.1 | 85.8 | 92.7 | 91.7 | 84.6 | 90.5 | 91.6 | 94.4 | 90.2 | 86.0 | 92.6 | 93.3 | 87.5 | 89.8 | 
| ConGLR | 85.6 | 92.3 | 93.9 | 91.7 | |||||||||||
| KG-BERT | 85.7 | 93.0 | 83.2 | 88.1 | 87.5 | 76.3 | 90.8 | 81.5 | 87.7 | 84.0 | 53.6 | 77.4 | 83.7 | 69.1 | 71.0 | 
| BERTRL | 96.9 | 98.2 | 92.3 | 98.9 | 96.5 | 92.8 | 81.8 | 94.4 | 95.4 | 87.5 | 89.7 | ||||
| PEOR | 99.6 | 99.7 | 95.8 | 99.9 | 98.7 | 93.7 | 96.9 | 96.8 | 98.6 | 96.5 | 90.0 | 96.6 | 97.8 | 92.4 | 94.7 | 
| 模型 | WN18RR | FB15k-237 | NELL-995 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| V1 | V2 | V3 | V4 | 平均值 | V1 | V2 | V3 | V4 | 平均值 | V1 | V2 | V3 | V4 | 平均值 | |
| RuleN | 80.8 | 78.2 | 53.3 | 71.5 | 70.9 | 49.7 | 77.8 | 87.6 | 85.6 | 75.1 | 53.5 | 81.7 | 77.2 | 61.3 | 68.4 | 
| Neural LP | 74.3 | 68.9 | 46.1 | 67.1 | 64.1 | 52.9 | 98.9 | 52.9 | 55.8 | 65.1 | 40.7 | 78.7 | 82.7 | 80.5 | 70.6 | 
| DRUM | 74.3 | 68.9 | 46.1 | 67.1 | 64.1 | 52.9 | 58.7 | 52.9 | 55.8 | 55.8 | 19.4 | 78.5 | 82.7 | 80.5 | 65.2 | 
| GraIL | 82.4 | 78.6 | 58.4 | 73.4 | 73.2 | 64.1 | 81.8 | 82.8 | 89.2 | 79.7 | 58.5 | 93.2 | 91.4 | 73.1 | 79.0 | 
| ConGLR | 85.6 | 92.9 | 70.7 | 92.9 | 85.0 | 68.2 | 85.9 | 88.6 | 89.3 | 83.0 | 81.0 | 81.6 | |||
| KG-BERT | 81.4 | 83.9 | 79.5 | 85.3 | 82.5 | 78.1 | 84.0 | 80.6 | 85.0 | 82.9 | 40.7 | 62.4 | 61.0 | 63.6 | 61.9 | 
| BERTRL | 89.3 | 94.2 | 86.5 | ||||||||||||
| PEOR | 94.9 | 96.7 | 92.4 | 95.0 | 94.7 | 88.0 | 95.5 | 94.2 | 95.7 | 93.3 | 90.5 | 97.6 | 99.3 | 92.7 | 95.0 | 
Tab. 3 Comparison results of different models (Hits@10)
| 模型 | WN18RR | FB15k-237 | NELL-995 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| V1 | V2 | V3 | V4 | 平均值 | V1 | V2 | V3 | V4 | 平均值 | V1 | V2 | V3 | V4 | 平均值 | |
| RuleN | 80.8 | 78.2 | 53.3 | 71.5 | 70.9 | 49.7 | 77.8 | 87.6 | 85.6 | 75.1 | 53.5 | 81.7 | 77.2 | 61.3 | 68.4 | 
| Neural LP | 74.3 | 68.9 | 46.1 | 67.1 | 64.1 | 52.9 | 98.9 | 52.9 | 55.8 | 65.1 | 40.7 | 78.7 | 82.7 | 80.5 | 70.6 | 
| DRUM | 74.3 | 68.9 | 46.1 | 67.1 | 64.1 | 52.9 | 58.7 | 52.9 | 55.8 | 55.8 | 19.4 | 78.5 | 82.7 | 80.5 | 65.2 | 
| GraIL | 82.4 | 78.6 | 58.4 | 73.4 | 73.2 | 64.1 | 81.8 | 82.8 | 89.2 | 79.7 | 58.5 | 93.2 | 91.4 | 73.1 | 79.0 | 
| ConGLR | 85.6 | 92.9 | 70.7 | 92.9 | 85.0 | 68.2 | 85.9 | 88.6 | 89.3 | 83.0 | 81.0 | 81.6 | |||
| KG-BERT | 81.4 | 83.9 | 79.5 | 85.3 | 82.5 | 78.1 | 84.0 | 80.6 | 85.0 | 82.9 | 40.7 | 62.4 | 61.0 | 63.6 | 61.9 | 
| BERTRL | 89.3 | 94.2 | 86.5 | ||||||||||||
| PEOR | 94.9 | 96.7 | 92.4 | 95.0 | 94.7 | 88.0 | 95.5 | 94.2 | 95.7 | 93.3 | 90.5 | 97.6 | 99.3 | 92.7 | 95.0 | 
| 模型 | WN18RR | FB15k-237 | NELL-995 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| V1 | V2 | V3 | V4 | 平均值 | V1 | V2 | V3 | V4 | 平均值 | V1 | V2 | V3 | V4 | 平均值 | |
| -Attention | 97.6 | 98.2 | 93.8 | 97.2 | 96.4 | 91.2 | 94.6 | 93.5 | 95.2 | 93.6 | 89.2 | 95.2 | 96.3 | 89.2 | 92.2 | 
| -Path | 91.7 | 97.5 | 93.2 | 96.5 | 94.7 | 86.3 | 92.2 | 89.7 | 91.5 | 89.9 | 81.1 | 91.7 | 92.8 | 86.4 | 88.0 | 
| -Triplet | 94.3 | 98.1 | 93.6 | 97.0 | 95.7 | 90.8 | 93.8 | 92.7 | 93.2 | 92.6 | 87.6 | 92.8 | 95.2 | 87.9 | 90.8 | 
| PEOR | 99.6 | 99.7 | 95.8 | 99.9 | 98.7 | 93.7 | 96.9 | 95.8 | 98.6 | 96.2 | 90.0 | 96.6 | 97.8 | 92.4 | 94.7 | 
Tab. 4 Results of ablation experiments (AUC-PR)
| 模型 | WN18RR | FB15k-237 | NELL-995 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| V1 | V2 | V3 | V4 | 平均值 | V1 | V2 | V3 | V4 | 平均值 | V1 | V2 | V3 | V4 | 平均值 | |
| -Attention | 97.6 | 98.2 | 93.8 | 97.2 | 96.4 | 91.2 | 94.6 | 93.5 | 95.2 | 93.6 | 89.2 | 95.2 | 96.3 | 89.2 | 92.2 | 
| -Path | 91.7 | 97.5 | 93.2 | 96.5 | 94.7 | 86.3 | 92.2 | 89.7 | 91.5 | 89.9 | 81.1 | 91.7 | 92.8 | 86.4 | 88.0 | 
| -Triplet | 94.3 | 98.1 | 93.6 | 97.0 | 95.7 | 90.8 | 93.8 | 92.7 | 93.2 | 92.6 | 87.6 | 92.8 | 95.2 | 87.9 | 90.8 | 
| PEOR | 99.6 | 99.7 | 95.8 | 99.9 | 98.7 | 93.7 | 96.9 | 95.8 | 98.6 | 96.2 | 90.0 | 96.6 | 97.8 | 92.4 | 94.7 | 
| 模型 | WN18RR | FB15k-237 | NELL-995 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| V1 | V2 | V3 | V4 | 平均值 | V1 | V2 | V3 | V4 | 平均值 | V1 | V2 | V3 | V4 | 平均值 | |
| -Attention | 92.0 | 95.5 | 89.3 | 90.7 | 92.3 | 83.1 | 90.2 | 87.5 | 85.6 | 86.3 | 87.3 | 92.4 | 94.5 | 86.5 | 90.1 | 
| -Path | 90.2 | 93.6 | 88.9 | 85.2 | 89.7 | 80.7 | 86.9 | 83.5 | 82.6 | 83.4 | 85.5 | 89.4 | 83.4 | 84.4 | 85.6 | 
| -Triplet | 91.3 | 93.8 | 88.9 | 87.3 | 90.8 | 82.6 | 88.9 | 85.2 | 84.3 | 85.2 | 86.5 | 90.2 | 90.8 | 85.7 | 88.3 | 
| PEOR | 94.5 | 97.6 | 92.9 | 95.6 | 95.1 | 88.0 | 96.9 | 96.2 | 95.7 | 94.7 | 90.1 | 95.2 | 98.8 | 88.5 | 93.1 | 
Tab. 5 Results of ablation experiments (Hits@10)
| 模型 | WN18RR | FB15k-237 | NELL-995 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| V1 | V2 | V3 | V4 | 平均值 | V1 | V2 | V3 | V4 | 平均值 | V1 | V2 | V3 | V4 | 平均值 | |
| -Attention | 92.0 | 95.5 | 89.3 | 90.7 | 92.3 | 83.1 | 90.2 | 87.5 | 85.6 | 86.3 | 87.3 | 92.4 | 94.5 | 86.5 | 90.1 | 
| -Path | 90.2 | 93.6 | 88.9 | 85.2 | 89.7 | 80.7 | 86.9 | 83.5 | 82.6 | 83.4 | 85.5 | 89.4 | 83.4 | 84.4 | 85.6 | 
| -Triplet | 91.3 | 93.8 | 88.9 | 87.3 | 90.8 | 82.6 | 88.9 | 85.2 | 84.3 | 85.2 | 86.5 | 90.2 | 90.8 | 85.7 | 88.3 | 
| PEOR | 94.5 | 97.6 | 92.9 | 95.6 | 95.1 | 88.0 | 96.9 | 96.2 | 95.7 | 94.7 | 90.1 | 95.2 | 98.8 | 88.5 | 93.1 | 
| 1 | 徐增林,盛泳潘,贺丽荣,等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4): 589-606. | 
| XU Z L, SHENG Y P, HE L R, et al. Review on knowledge graph techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 589-606. | |
| 2 | 黄恒琪,于娟,廖晓,等. 知识图谱研究综述[J]. 计算机系统应用, 2019, 28(6): 1-12. | 
| HUANG H Q, YU J, LIAO X, et al. Review on knowledge graphs[J]. Computer Systems and Applications, 2019, 28(6): 1-12. | |
| 3 | WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2014: 1112-1119. | 
| 4 | TROUILLON T, WEBLBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 2071-2080. | 
| 5 | DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 1811-1818. | 
| 6 | LAO N, COHEN W W. Relational retrieval using a combination of path-constrained random walks[J]. Machine Learning, 2010, 81(1): 53-67. | 
| 7 | LIN X, LIANG Y, GIUNCHIGLIA F, et al. Relation path embedding in knowledge graphs[J]. Neural Computing and Applications, 2019, 31(9): 5629-5639. | 
| 8 | YAO L, MAO C, LUO Y. KG-BERT: BERT for knowledge graph completion[EB/OL]. [2023-12-02]. . | 
| 9 | DEVLIN J, CHANG M W, LEE K. BERT: pre-training of deep bidirectional Transformers for language understanding[C]// Proceedings of the 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. | 
| 10 | ZHA H, CHEN Z, YAN X. Inductive relation prediction by BERT[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 5923-5931. | 
| 11 | TERU K K, DENIS E G, HAMILTON W L. Inductive relation prediction by subgraph reasoning[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 9448-9457. | 
| 12 | CHEN J, HE H, WU F, et al. Topology-aware correlations between relations for inductive link prediction in knowledge graphs[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 6271-6278. | 
| 13 | MAI S, ZHENG S, YANG Y, et al. Communicative message passing for inductive relation reasoning[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 4294-4302. | 
| 14 | WANG H, REN H, LESKOVEC J. Relational message passing for knowledge graph completion[C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 1697-1707. | 
| 15 | LIN Q, LIU J, XU F, et al. Incorporating context graph with logical reasoning for inductive relation prediction[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 893-903. | 
| 16 | BRONSTEIN M M, BRUNA J, LeCUN Y, et al. Geometric deep learning: going beyond Euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34(4): 18-42. | 
| 17 | HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1025-1035. | 
| 18 | KWAK H, JUNG H B K. Subgraph representation learning with hard negative samples for inductive link prediction[C]// Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 4768-4772. | 
| 19 | ZHENG S, MAI S, SUN Y, et al. Subgraph-aware few-shot inductive link prediction via meta-learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(6): 6512-6517. | 
| 20 | SOCHER R, CHEN D, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2013: 926-934. | 
| 21 | DAZA D, COCHEZ M, GROTH P. Inductive entity representations from text via link prediction[C]// Proceedings of the 2021 Web Conference. New York: ACM, 2021: 798-808. | 
| 22 | WANG L, ZHAO W, WEI Z, et al. SimKGC: simple contrastive knowledge graph completion with pre-trained language models[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 4281-4294. | 
| 23 | GESESE G A, SACK H, ALAM M. RAILD: towards leveraging relation features for inductive link prediction in knowledge graphs[C]// Proceedings of the 11th International Joint Conference on Knowledge Graphs. New York: ACM, 2022: 82-90. | 
| 24 | TOUTANOVA K, CHEN D. Observed versus latent features for knowledge base and text inference[C]// Proceedings of the 3rd Workshop on Continuous Vector Space Models and Their Compositionality. Stroudsburg: ACL, 2015: 57-66. | 
| 25 | XIONG W, HOANG T, WANG W Y. DeepPath: a reinforcement learning method for knowledge graph reasoning[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 564-573. | 
| 26 | MEILICKE C, FINK M, WANG Y, et al. Fine-grained evaluation of rule-and embedding-based systems for knowledge graph completion[C]// Proceedings of the 2018 International Semantic Web Conference, LNCS 11136. Cham: Springer, 2018: 3-20. | 
| 27 | YANG F, YANG Z, COHEN W W. Differentiable learning of logical rules for knowledge base reasoning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 2316-2325. | 
| 28 | SADEGHIAN A, ARMANDPOUR M, DING P, et al. DRUM: end-to-end differentiable rule mining on knowledge graphs[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 15347-15357. | 
| [1] | Jie HU, Qiyang ZHENG, Jun SUN, Yan ZHANG. Multi-label classification model based on multi-label relational graph and local dynamic reconstruction learning [J]. Journal of Computer Applications, 2025, 45(4): 1104-1112. | 
| [2] | Shiyue GUO, Jianwu DANG, Yangping WANG, Jiu YONG. 3D hand pose estimation combining attention mechanism and multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(4): 1293-1299. | 
| [3] | Liwei ZHANG, Quan LIANG, Yutao HU, Qiaole ZHU. Channel shuffle attention mechanism based on group convolution [J]. Journal of Computer Applications, 2025, 45(4): 1069-1076. | 
| [4] | Kunyuan JIANG, Xiaoxia LI, Li WANG, Yaodan CAO, Xiaoqiang ZHANG, Nan DING, Yingyue ZHOU. Boundary-cross supervised semantic segmentation network with decoupled residual self-attention [J]. Journal of Computer Applications, 2025, 45(4): 1120-1129. | 
| [5] | Chun XU, Shuangyan JI, Huan MA, Enwei SUN, Mengmeng WANG, Mingyu SU. Consultation recommendation method based on knowledge graph and dialogue structure [J]. Journal of Computer Applications, 2025, 45(4): 1157-1168. | 
| [6] | Haijun GENG, Yun DONG, Zhiguo HU, Haotian CHI, Jing YANG, Xia YIN. Encrypted traffic classification method based on Attention-1DCNN-CE [J]. Journal of Computer Applications, 2025, 45(3): 872-882. | 
| [7] | Tianqi ZHANG, Shuang TAN, Xiwen SHEN, Juan TANG. Image watermarking method combining attention mechanism and multi-scale feature [J]. Journal of Computer Applications, 2025, 45(2): 616-623. | 
| [8] | Haiteng MENG, Xiaole ZHAO, Tianrui LI. Lightweight image super-resolution reconstruction based on asymmetric information distillation network [J]. Journal of Computer Applications, 2025, 45(2): 601-609. | 
| [9] | Dixin WANG, Jiahao WANG, Min LI, Hao CHEN, Guangyao HU, Yu GONG. Abnormal attack detection for underwater acoustic communication network [J]. Journal of Computer Applications, 2025, 45(2): 526-533. | 
| [10] | Yan LI, Guanhua YE, Yawen LI, Meiyu LIANG. Enterprise ESG indicator prediction model based on richness coordination technology [J]. Journal of Computer Applications, 2025, 45(2): 670-676. | 
| [11] | Qijian CAI, Wei TAN. Semantic graph enhanced multi-modal recommendation algorithm [J]. Journal of Computer Applications, 2025, 45(2): 421-427. | 
| [12] | Lifang WANG, Jingshuang WU, Pengliang YIN, Lihua HU. Action recognition algorithm based on attention mechanism and energy function [J]. Journal of Computer Applications, 2025, 45(1): 234-239. | 
| [13] | Rui LI, Guanfeng LI, Dezhou HU, Wenxin GAO. Knowledge graph multi-hop reasoning model fusing path and subgraph features [J]. Journal of Computer Applications, 2025, 45(1): 32-39. | 
| [14] | Jie XU, Yong ZHONG, Yang WANG, Changfu ZHANG, Guanci YANG. Facial attribute estimation and expression recognition based on contextual channel attention mechanism [J]. Journal of Computer Applications, 2025, 45(1): 253-260. | 
| [15] | Junying CHEN, Shijie GUO, Lingling CHEN. Lightweight human pose estimation based on decoupled attention and ghost convolution [J]. Journal of Computer Applications, 2025, 45(1): 223-233. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||