Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (6): 1998-2006.DOI: 10.11772/j.issn.1001-9081.2024060855

• Multimedia computing and computer simulation • Previous Articles    

Information bottleneck-guided intracranial hemorrhage segmentation method

Jie JIANG1, Gongning LUO1, Suyu DONG2, Fanding LI1, Xiangyu LI1(), Qince LI1, Yongfeng YUAN1, Kuanquan WANG1   

  1. 1.Faculty of Computing,Harbin Institute of Technology,Harbin Heilongjiang 150001,China
    2.College of Computer and Control Engineering,Northeast Forestry University,Harbin Heilongjiang 150040,China
  • Received:2024-06-24 Revised:2024-09-06 Accepted:2024-09-10 Online:2024-09-18 Published:2025-06-10
  • Contact: Xiangyu LI
  • About author:JIANG Jie, born in 2001, M. S. candidate. His research interests include medical image processing, computer vision.
    LUO Gongning, born in 1989, Ph. D., associate professor. His research interests include computational cardiology, medical image analysis.
    DONG Suyu, born in 1989, Ph. D., associate professor. Her research interests include medical image processing, multimodal medical image analysis.
    LI Fanding, born in 2002, Ph. D. candidate. His research interests include medical image processing, computer vision.
    LI Qince, born in 1985, Ph. D., associate research fellow. His research interests include medical image processing, biological system modeling.
    YUAN Yongfeng, born in 1979, Ph. D., associate professor. His research interests include medical image processing, computational cardiology.
    WANG Kuanquan, born in 1964, Ph. D., professor. His research interests include medical image processing, computational cardiology.
  • Supported by:
    National Natural Science Foundation of China(62372135);China Postdoctoral Science Foundation(2024M754207);National Postdoctoral Researcher Program(GZC20242214)

信息瓶颈引导的颅内出血分割方法

蒋杰1, 骆功宁1, 董素宇2, 李凡丁1, 李向宇1(), 李钦策1, 袁永峰1, 王宽全1   

  1. 1.哈尔滨工业大学 计算学部,哈尔滨 150001
    2.东北林业大学 计算机与控制工程学院,哈尔滨 150040
  • 通讯作者: 李向宇
  • 作者简介:蒋杰(2001—),男,重庆人,硕士研究生,主要研究方向:医学图像处理、计算机视觉
    骆功宁(1989—),男,山东烟台人,副教授,博士,主要研究方向:计算心脏学、医学图像分析
    董素宇(1989—),女,内蒙古乌兰察布人,副教授,博士,主要研究方向:医学图像处理、多模态医学图像分析
    李凡丁(2002—),男,吉林长春人,博士研究生,主要研究方向:医学图像处理、计算机视觉
    李钦策(1985—),男,山东淄博人,副研究员,博士,主要研究方向:医学图像处理、生物系统建模
    袁永峰(1979—),男,四川邛崃人,副教授,博士,主要研究方向:医学图像处理、计算心脏学
    王宽全(1964—),男,四川达州人,教授,博士,主要研究方向:医学图像处理、计算心脏学。

Abstract:

In the field of computer-aided diagnosis, accurate segmentation of IntraCranial Hemorrhages (ICHs) in Computed Tomography (CT) images is crucial for subsequent treatment and prognosis. To address the challenge of segmenting small hemorrhage regions, an information bottleneck-guided ICH segmentation method was proposed. Based on this method,an Information Bottleneck-Guided Segmentation Network (IBGS-Net) was proposed. Firstly, the U-Net architecture was used as a base, and an information bottleneck layer was introduced to enhance the recognition of key features related to ICH segmentation. Then, through the designed Residual SPatially-ADaptivE normalization (ResSPADE) module, the Information Activation Map (IAM) was integrated effectively into the segmentation process, thereby improving the network’s ability to identify and locate hemorrhage regions. Finally, an Interactive Guided Loss (IGL) function was introduced to optimize the model’s processing of difficult-to-segment regions, thereby further enhancing the model’s generalization performance. Evaluation results on the internal dataset indicate that the proposed method achieves 78.1% in Dice Similarity Coefficient (DSC), 90.1% in Normalization Surface Dice (NSD), and 11.5% in Relative Volume Difference (RVD). On the public dataset INSTANCE 2022, the results of comparison with other segmentation methods show that compared to the suboptimal results, the three indicators of the proposed method increased by 1.9, 2.4, and decreased by 3.2 percentage points, respectively. The above validates the effectiveness and superiority of the proposed method in ICH segmentation tasks, so that the method is suitable for assisting clinicians in segmenting ICHs.

Key words: IntraCranial Hemorrhage (ICH) segmentation, information bottleneck, Interactive Guidance Loss (IGL), Residual SPatially-ADaptivE normalization (ResSPADE), U-Net

摘要:

在计算机辅助诊断领域,精确分割计算机断层扫描(CT)图像中的颅内出血(ICH)对后续的治疗和预后至关重要。针对小出血区域难以分割的问题,提出一种信息瓶颈引导的ICH分割方法并基于该方法构建一个信息瓶颈引导的分割网络(IBGS-Net)。首先,采用U-Net架构作为基础,并引入信息瓶颈层增强与ICH分割相关的关键特征的识别;其次,通过设计的残差空间自适应归一化(ResSPADE)模块,信息激活图(IAM)被有效整合到分割流程中,提升网络对出血区域的识别和定位能力;最后,引入交互引导损失(IGL)函数以优化模型对难分割区域的处理,进一步增强模型的泛化性能。在内部数据集上的评估结果表明,所提方法在Dice相似性系数(DSC)、归一化表面Dice(NSD)和相对体积差(RVD)这3个指标上分别达到了78.1%、90.1%和11.5%;在公开数据集INSTANCE 2022上,与其他的分割方法的比较结果表明,所提方法的3个指标相较于次优结果,分别提升了1.9、2.4和下降了3.2个百分点。以上验证了所提方法在ICH分割任务中的有效性和优越性,可用于协助临床医生进行ICH分割。

关键词: 颅内出血分割, 信息瓶颈, 交互引导损失, 残差空间自适应归一化, U-Net

CLC Number: