[1]NIGAM K, MCCALLUM A K, THRUN S, et al. Text classification from labeled and unlabeled documents using EM[J]. Machine Learning, 1999,39(2):103-134.
[2]许震,沙朝锋,王晓玲,等.基于KL距离的非平衡数据半监督学习算法[J].计算机研究与发展,2010,47(1):81-87.
[3]孔祥南,黎铭,姜远,等.一种针对弱标记的直推式多标记分类方法[J].计算机研究与发展,2010,47(8):1392-1399.
[4]ZHU XIAOJIN. Semi-supervised learning literature survey, Computer Sciences TR 1530[R/OL]. Madison: University of Wisconsin-Madison, Department of Computer Sciences, 2006 [2011-05-12]. http://pages.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf.
[5]ZHU X, GHAHRAMANI Z, LAFFERTY J. Semi-supervised learning using Gaussian fields and harmonic functions [C]// ICML 2003: The 20th International Conference on Machine Learning. Palo Alto: AAAI, 2003:912-919.
[6]ZHOU D, BOUSQUET O, LAL T N, et al. Learning with local and global consistency [C]// Advances in Neural Information Processing Systems 16: Proceedings of the 2003 Conference. Cambridge: MIT Press, 2004: 321-328.
[7]WANG FEI, ZHANG CHANGSHUI. Label propagation through linear neighborhoods [C]// The 23th International Conference on Machine Learning. New York: ACM, 2006:985-992.
[8]ZHU X, GHAHRAMANI Z. Learning from labeled and unlabeled data with label propagation, CMU-CALD-02-107 [R]. Pittsburgh: Carnegie Mellon University, Department of Computer Science, 2002.
[9]BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003,3(5): 993-1022.
[10]DUMAIS D S, LANDAUER T, FURNAS G, et al. Indexing by latent semantic analysis[J]. Journal of the American Society of Information Science,1998,41(6):391-407.
[11]HOFMANN T. Probabilistic latent semantic indexing [C]// Proceedings of the 22nd ACM-SIGIR International Conference on Research and Development in Information Retrieval. New York: ACM, 1999:50-57.〖BP(〗http://www.cs.brown.edu/~th/papers/Hofmann-SIGIR99.pdf〖BP)〗
[12]CAI DENG, MEI QIAOZHU, HAN JIAWEI, et al. Modeling hidden topics on document manifold [C]// CIKM 08: Proceedingof the 17th ACM Conference on Information and Knowledge Management. New York: ACM, 2008: 911-920.
[13]石晶,胡明,石鑫,等.基于LDA模型的文本分割[J].计算机学报,2008,31(10):1780-1787.
[14]STEYVERS M, GRIFFITHS T. Probabilistic topic models [M]// Latent Semantic Analysis: A Road to Meaning. Mahwah: Lawrence Erlbaum Associates, 2007: 424-440.
[15]BLEI D M, GRIFFITHS T L, JORDAN M I, et al. Hierarchical topic models and the nested Chinese restaurant process [C]// Advances in Neural Information Processing Systems 16: Proceedings of the 2003 Conference. Cambridge: MIT Press, 2004:17-24. |