Journal of Computer Applications ›› 2012, Vol. 32 ›› Issue (01): 182-190.DOI: 10.3724/SP.J.1087.2012.00182
• Database technology • Previous Articles Next Articles
DING Yue1,ZHANG Yang1,2,LI Zhan-huai3,WANG Yong3
Received:
2011-07-05
Revised:
2011-09-03
Online:
2012-02-06
Published:
2012-01-01
Contact:
ZHANG Yang
丁悦1,张阳1,2,李战怀3,王勇3
通讯作者:
张阳
作者简介:
基金资助:
国家自然科学基金资助项目(60901078);中央高校基本科研业务费专项(GK361001)
CLC Number:
DING Yue ZHANG Yang LI Zhan-huai WANG Yong. Research and advances on graph data mining[J]. Journal of Computer Applications, 2012, 32(01): 182-190.
丁悦 张阳 李战怀 王勇. 图数据挖掘技术的研究与进展[J]. 计算机应用, 2012, 32(01): 182-190.
[1]CONTE D, FOGGIA P, SANSONE C, et al. Thirty years of graph matching in pattern recognition [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2004, 18(3): 265-298.[2]CORDELLA L P, FOGGIA P, SANSONE C, et al. A (sub)graph isomorphism algorithm for matching large graphs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(20): 1367-1372.[3]LARROSA J, VALIENTE G. Constraint satisfaction algorithms for graph pattern matching [J]. Mathematical Structures in Computer Science, 2002, 12(4): 403-422.[4]MESSMER B T, BUNKE H. A decision tree approach to graph and subgraph isomorphism detection [J]. Pattern Recognition, 1999, 32(12): 1979-1998.[5]LEVI G. A note on the derivation of maximal common subgraphs of two directed or undirected graphs [J]. Calcolo, 1972, 9(4):341-354.[6]McGREGOR J J. Backtrack search algorithms and the maximal common subgraph problem [J]. Software Practice and Experience, 1982, 12(1): 23-34.[7]BUNKE H, FOGGIA P, GUIDOBALDI C, et al. A comparison of algorithms for maximum common subgraph on randomly connected graphs [C]// Proceedings of the Joint IAPR International Workshop on Structural, Syntactic, and Statistical Pattern Recognition. London: Springer-Verlag, 2002: 123-132.[8]BUNKE H, JIANG X, KANDEL A. On the minimum common supergraph of two graphs [J]. Computing, 2000, 65(1):13-25. [9]SANFELIU A, FU K S. A distance measure between attributed relational graphs for pattern recognition [J]. IEEE Transactions on Systems, Man, and Cybernetics: Part B, 1983, 13(3): 353-363.[10]MESSMER B T, BUNKE H. A new algorithm for error-tolerant subgraph isomorphism detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(5): 493-504.[11]WAGNER R A, FISCHER M J. The string-to-string correction problem [J]. Journal of the Association for Computer Machinery, 1974, 21(1): 168-173.[12]MYERS R, WISON R C, HANCOCK E R. Bayesian graph edit distance [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(6): 628-635.[13]JUSTICE D, HERO A O. A binary linear programming formulation of the graph edit distance [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(8): 1200-1214.[14]BHALOTIA G, HULGERI A, NAKHE C, et al. Keyword searching and browsing in databases using BANKS [C]// Proceedings of the 18th International Conference on Data Engineering. Washington, DC: IEEE Computer Society, 2002: 431-440.[15]KACHOLIA V, PANDIT S, CHAKRABARTI S, et al. Bidirectional expansion for keyword search on graph databases [C]// Proceedings of the 31st International Conference on Very Large Data Bases. Trondheim: VLDB Endowment, 2005: 505-516.[16]HE HAO, WANG HAI-XUN, YANG JUN, et al. BLINKS: Ranked keyword searches on graphs [C]// Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2007: 305-316.[17]BALMIN A, HRISTIDIS V, PAPAKONSTANTINOU Y. Objec-tRank: Authority-based keyword search in databases [C]// Proceedings of the 30th International Conference on Very Large Data Bases. Toronto: VLDB Endowment, 2004: 564-575.[18]INOKUCHI A, WASHIO T, OKADA T, et al. Applying the Apriori-based graph mining method to mutagenesis data analysis [J]. Journal of Computer Aided Chemistry, 2001, 2(1): 87-92.[19]KURAMOCHI M, KARYPIS G. Frequent subgraph discovery [C]// Proceedings of the 2001 IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2001: 313-320.[20]VANETIK N, GUDES E, SHIMONY S E. Computing frequent graph patterns from semistructured data [C]// Proceedings of the 2002 IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2002: 458-465.[21]YAN XI-FENG, HAN JIA-WEI. gSpan: Graph-based substructure pattern mining [C]// Proceedings of the 2002 IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2002: 721-724.[22]HUAN JUN, WANG WEI, PRINS J. Efficient mining of frequent subgraphs in the presence of isomorphism [C]// Proceedings of the 2002 IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2002: 549-552.[23]YAN XI-FENG, HAN JIA-WEI. Closegraph: Mining closed fre-quent graph patterns [C]// Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2003: 286-295.[24]YAN XI-FENG, ZHOU X J, HAN JIA-WEI. Mining closed relational graphs with connectivity constraints [C]// Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. New York: ACM Press, 2005: 324-333.[25]COOK D J, HOLDER L B. Graph-based data mining [J]. IEEE Intelligent Systems, 2000, 15(2): 32-41.[26]KERNIGHAN B W, LIN S. An efficient heuristic procedure for partitioning graphs [J]. The Bell System Technical Journal, 1970, 49(1): 291-307.[27]BRODER A Z, CHARIKAR M, FRIEZE A, et al. Syntactic clustering of the Web [C]// Proceedings of the 6th International Conference on World Wide Web. Essex, UK: Elsevier Science, 1997: 1157-1166.[28]GIBSON D, KUMAR R, TOMKINS A. Discovering large dense subgraphs in massive graphs [C]// Proceedings of the 31st International Conference on Very Large Data Bases. Trondheim: VLDB Endowment, 2005: 721-732.[29]FLAKE G, TARJAN R, TSIOUTSIOULIKLIS M. Graph clustering and minimum cut trees [J]. Internet Mathematics, 2003, 1(4): 385-408.[30]AGGARWAL C, TA N, WANG JIAN-YONG, et al. XProj: A framework for projected structural clustering of XML documents [C]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2007: 46-55.[31]LEE M, HSU W, YANG L, et al. XClust: Clustering XML schemas for effective integration [C]// Proceedings of the 11th International Conference on Information and Knowledge Management. New York: ACM Press, 2002: 292-299.[32]WANG LIAN, CHEUNG D W, MAMOULIS N, et al. An efficient and scalable algorithm for clustering XML documents by structure [J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(1): 82-96.[33]DALAMAGAS T, CHENG T, WINKEL K, et al. Clustering XML documents using structural summaries [C]// Proceedings of the 2004 International Conference on Extending Database Technology. Berlin: Springer-Verlag, 2004: 547-556.[34]TSUDA K, KUDO T. Clustering graphs by weighted substructure mining [C]// Proceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006: 953-960.[35]TSUDA K, KURIHARA K. Graph mining with variational Dirichlet process mixture models [C]// Proceedings of the 8th SIAM International Conference on Data Mining, Society for Industrial and Applied Mathematics. New York: ACM Press, 2008: 432-442. [36]SAIGO H, NOWOZIN S, KADOWAKI T, et al. GBoost: A mathematical programming approach to graph classification and regression [J]. Machine Learning, 2009, 75(1): 69-89.[37]DESHPANDE M, KURAMOCHI M, KARYPIS G. Frequent substructure based approaches for classifying chemical compounds [J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(8): 1036-1050[38]MOONESINGHE H D K, VALIZADEGAN H, FODEH S, et al. A probabilistic substructure-based approach for graph classification [C]// Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence. Washington, DC: IEEE Computer Society, 2007: 346-349.[39]HORVATH T, GARTNER T, WROBEL S. Cyclic pattern kernels for predictive graph mining [C]// Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2004: 158-167.[40]KASHIMA H, TSUDA K, INOKUCHI A. Marginalized kernels be-tween labeled graphs [C]// Proceedings of the 21st International Conference on Machine Learning. New York: AAAI Press, 2003: 321-328.[41]BORGWARDT K M, KRIEGEL H P. Shortest-path kernels on graphs [C]// Proceedings of the 5th IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2005: 74-81.[42]ARTNER T G, FLACH P A, WROBEL S. On graph kernels: Hardness results and efficient alternatives [C]// Proceedings of the 16th Annual Conference on Computational Learning Theory and the 7th Kernel Workshop. Berlin: Springer-Verlag, 2003: 129-143.[43]BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers [C]// Proceedings of the Annual Conference on Computational Learning Theory. New York: ACM Press, 1992: 144-152.[44]WASSERMAN S, FAUST K. Social network analysis: Methods and applications [M]. Cambridge: Cambridge University Press, 1995.[45]AGGARWAL C, WANG HAI-XUN. Managing and mining graph data [M]. Berlin: Springer-Verlag, 2010.[46]RATTIGAN M, MAIER M, JENSEN D. Graph clustering with network structure indices [C]// Proceedings of the 24th International Conference on Machine Learning. New York: ACM Press, 2007: 783-790.[47]GIBSON D, KUMAR R, TOMKINS A. Discovering large dense subgraphs in massive graphs [C]// Proceedings of the 31st International Conference on Very Large Data Bases. Trondheim: VLDB Endowment, 2005: 721-732.[48]ABELLO J, RESENDE M G, SUDARSKY S. Massive quasi-clique detection [C]// Proceedings of the 5th Latin American Symposium on Theoretical Informatics. London: Springer-Verlag, 2002: 598-612.[49]PEI JIAN, JIANG DA-XIN, ZHANG AI-DONG. On mining cross-graph quasi-cliques [C]// Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. New York: ACM Press, 2005: 228-238.[50]PEI JIAN, JIANG DA-XIN, ZHANG AI-DONG. Mining cross-graph quasi-cliques in gene expression and protein interaction data [C]// Proceedings of the 21st International Conference on Data Engineering. Washington, DC: IEEE Computer Society, 2005: 353-354.[51]BORDINO I, DONATO D, GIONIS A, et al. Mining large net-works with subgraph counting [C]// Proceedings of the 8th IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2008: 737-742.[52]CHAKRABARTI D, WANG YANG, WANG CHEN-XI, et al. Epidemic thresholds in real networks [J]. ACM Transactions on Information Systems and Security, 2008, 10(4): 1-26.[53]LESKOVEC J, KRAUSE A, GUESTRIN C, et al. Cost-effective outbreak detection in networks [C]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2007: 420-429.[54]NEWMAN M E J. The spread of epidemic disease on networks [M]. Maryland: American Physical Society, 2002.[55]BACKSTROM L, DWORK C, KLEINBERG J. Wherefore art thou r3579x? Anonymized social networks, hidden patterns, and structural steganography [C]// Proceedings of the 16th International Conference on World Wide Web. New York: ACM Press, 2007: 181-190.[56]HAY M, MIKLAU G, JENSEN D, et al. Anonymizing social networks [R]. Amherst, Massachusetts: University of Massachusetts, 2007: 7-19.[57]KLEINBERG J M. Challenges in mining social network data: Processes, privacy, and paradoxes [C]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2007: 4-5.[58]HAY M, MIKLAU G, JENSEN D, et al. Resisting structural re-identification in anonymized social networks [C]// Proceedings of the 34th International Conference on Very Large Data Bases. Berlin: Springer-Verlag, 2008: 102-114.[59]AGRAWAL R, SRIKANT R. Privacy-preserving data mining [C]// Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2000: 439-450. [60]AGRAWAL D, AGRAWAL C. On the design and quantification of privacy preserving data mining algorithms [C]// Proceedings of the 20th Symposium on Principles of Database Systems. New York: ACM Press, 2001: 247-255.[61]RUSSELL S, NORVIG P. Artificial intelligence: A modern approach [M]. 3rd ed. Upper Saddle River: Prentice Hall, 2003.[62]YING XIAO-WEI, WU XIN-TAO, BARBARA D. Spectrum based fraud detection in social networks [C]// Proceedings of the 17th ACM Conference on Computer and Communications Security. New York: ACM Press, 2010: 747-749.[63]YING XIAO-WEI, WU LE-TING, WU XIN-TAO. A spectrum-based framework for quantifying randomness of social networks [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 912-923.[64]EICHINGER F, BOHM K, HUBER M. Improved software fault detection with graph mining [EB/OL]. [2011-04-04]. http://research.ics.tkk.fi/events/MLG08/papers/session3/paper21.pdf.[65]EICHINGER F, BOHM K, HUBER M. Mining edge-weighted call graphs to localize software bugs [C]// Proceedings of the 2008 European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin: Springer-Verlag, 2008: 333-348.[66]CHANG R-Y, PODGURSKI A, YANG JIONG. Discovering neglected conditions in software by mining dependence graphs [J]. IEEE Transactions on Software Engineering, 2008, 34(5): 579-596.[67]ALTSCHUL S F, MADDEN T L, SCHEFFER A A, et al. Capped BLAST and PSI-BLAST: A new generation of protein database search programs [J]. Nucleic Acids Research, 1997, 25(17): 3389-3402.[68]THOMPSON J D, HIGGINS D G, GIBSON T J. Clustalw: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice [J]. Nucleic Acids Research, 1994, 22(22): 4673-4680.[69]HARTWELL J H, HOPFIELD J J, LEIBLER S, et al. From molechlar to modular cell biology [J]. Nature, 1999, 402(6761): C47-C51.[70]OLTVAI Z N,BARABASI A L. Life's complexity pyramid [J]. Science, 2002, 298(5594): 763-764.[71]BORGELT C, BERTHOLD M R. Mining molecular fragments: Finding relevant substructures of molecules [C]// Proceedings of 2002 IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2002: 51-58.[72]DESHPANDE M, KURAMOCHI M, WALE N, et al. Frequent substructure-based approaches for classifying chemical compounds [J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(8): 1036-1050.[73]HUAN JUN, WANG WEI, BANDYOPADHYAY D, et al. Mining spatial motifs from protein structure graphs [C]// Proceedings of the 8th Conference on Research in Computational Molecular Biology. New York: ACM Press, 2004: 308-315.[74]KOYUTURK M, GRAMA A, SZPANKOWSKI W. An efficient algorithm for detecting frequent subgraphs in biological networks [J]. Bioinformatics, 2004, 20(1): 200-207.[75]HU HAI-YAN, YAN XI-FENG, HUANG YU, et al. Mining coherent dense subgraphs across massive biological networks for functional discovery [J]. Bioinformatics, 2005, 21(1): 213-221.[76]BARABASI A L, ALBERT R. Emergence of scaling in random networks [J]. Science, 1999, 286(5439): 509-512.[77]FALOUTSOS M, FALOUTSOS P, FALOUTSOS C. On power law relationships of the Internet topology [C]// Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. New York: ACM Press, 1999: 251-262.[78]FABRIKANT A, KOUTSOUPIAS E, PAPADIMITRIOU C H. Heuristically optimized trade-offs: A new paradigm for power laws in the Internet [C]// Proceedings of the 29th International Colloquium on Automata, Languages and Programming. Berlin: Springer-Verlag, 2002: 110-122.[79]KUMAR R, RAGHAVAN P, RAJAGOPALAN S, et al. Stochastic models for the Web graph [C]// Proceedings of the 41st Annual Symposium on Foundations of Computer Science. Washington, DC: IEEE Computer Society, 2000: 57-65.[80]〖HJ1.5mm〗BRIN S, PAGE L. The anatomy of a large scale hypertextual Web search engine [C]// Proceedings of the 7th International Conference on World Wide Web 7. B. V. Amsterdam: Elsevier Science, 1998: 107-117.[81]PAGE L, BRIN S, MOTWANI R, et al. The pagerank citation ranking: Bringing order to the Web [R]. Stanford: Stanford University, 1998.[82]BRODER A Z, GLASSMAN S C, MANASSE M S, et al. Syntactic clustering of the Web [J]. Computer Networks and ISDN Systems, 1997, 29(8/9/10/11/12/13): 1157-1166.[83]BAEZA-YATES R, TIBERI A. Extracting semantic relations from query logs [C]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2007: 76-85.[84]MEI QIAO-ZHU, ZHOU DENG-YONG, CHURCH K. Query suggestion using hitting time [C]// Proceeding of the 17th ACM Conference on Information and Knowledge Management. New York: ACM Press, 2008: 469-478.[85]BONCHI F, CASTILLO C, DONATO D, et al. Topical query decomposition [C]// Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2008: 52-60. [86]BOLDI P, BONCHI F, CASTILLO C, et al. The query-flow graph: Model and applications [C]// Proceeding of the 17th ACM Conference on Information and Knowledge Management. New York: ACM Press, 2008: 609-618.[87]CAO HUAN-HUAN, JIANG DAX-IN, PEI JIAN, et al. Context-aware query suggestion by mining click-through and session data [C]// Proceeding of the 14th ACM International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2008: 875-883.[88]WEN JI-RONG, NIE JIAN-YUN, ZHANG HONG-JIANG. Clustering user queries of a search engine [C]// Proceedings of the 10th International Conference on World Wide Web. New York: ACM Press, 2001: 162-168.[89]FONSECA B M, GOLGHER P B, de MOURA E S, et al. Discovering search engine related queries using association rules [J]. Journal of Web Engineering, 2004, 2(4):215-227.[90]BEEFERMAN D, BERGER A. Agglomerative clustering of a search engine query log [C]// Proceedings of the 6th ACM International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2000: 407-416.[91]BAEZA-YATES R, HURTADO C, MENDOZA M. Query recommendation using query logs in search engines [C]// Proceedings of the 2004 International Conference on Extending Database Technology. Berlin: Springer-Verlag, 2005: 395-397.[92]CASTILLO C, DONATO D, GIONIS A. Estimating the number of citations of a paper using author reputation [C]// Proceedings of the 14th International Conference on String Processing and Information Retrieval. Berlin: Springer-Verlag, 2007: 107-117.[93]AGICHTEIN E, CASTILLO C, DONATO D, et al. Finding high quality content in social media, with an application to community-based question answering [C]// Proceedings of the 4th ACM International Conference on Web Search and Data Mining. New York: ACM Press, 2008: 183-194.[94]ASTHANA S, KING O, GIBBONS F, et al. Predicting protein complex membership using probabilistic network reliability [J]. Genome Research, 2004, 14(6): 1170-1175.[95]GHOSH J, NGO H Q, YOON S, et al. 〖HJ1.7mm〗On a routing problem within probabilistic graphs and its application to intermittently connected networks [EB/OL]. [2011-05-20]. http://joyghosh.com/docs/INFOCOM_SOLAR_ANAL.pdf.[96]INOKUCHI A, WASHIO T, MOTODA H. An Apriori-based algorithm for mining frequent substructures from graph data [C]// Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery. Berlin: Springer-Verlag, 2000: 13-23.[97]NIJSSEN S, KOK J N. A quickstart in frequent structure mining can make a difference [C]// Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2004: 647-652.[98]HUAN JUN, WANG WEI, PRINS J, et al. Spin: Mining maximal frequent subgraphs from graph databases [C]// Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2004: 581-586.[99]周水庚,蔚赵春,蒋豪良.图结构数据搜索的概念、问题与进展[J].中国计算机学会通讯,2007,3(8):59-65.[100]SHASHA D, WANG T L J, GIUGNO R. Algorithmics and application of tree and graph searching [C]// Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New York: ACM Press, 2002: 39-52.[101]YAN XI-FENG, YU P S, HAN JIA-WEI. Graph indexing: A frequent structure-based approach [C]// Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 2004: 335-346.[102]ZOU ZHAO-NIAN, LI JIAN-ZHONG, GAO HONG, et al. Finding top-k maximal cliques in an uncertain graph [C]// Proceedings of the 26th IEEE International Conference on Data Engineering. Washington, DC: IEEE Computer Society, 2010: 649-652.[103]HINTSANEN P. The most reliable subgraph problem [C]// Proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases. Berlin: Springer-Verlag, 2007: 471-478.[104]de RAEDT L, KERSTING K, KIMMIG A, et al. Compressing probabilistic prolog programs [J]. Machine Learning, 2008, 70(2/3): 151-168.[105]HINTSANEN P, TOIVONEN H. Finding reliable subgraphs from large probabilistic graphs [J]. Data Mining and Knowledge Discovery, 2008, 17(1): 3-23.[106]COLBOURN C J. The combinatorics of network reliability [M]. Oxford: Oxford University Press, 1987.[107]VALDES J, TARJAN R E, LAWLER E L. The recognition of series parallel digraphs [J]. SIAM Journal on Computing, 1982, 11(2): 298-313.[108]ZOU ZHAO-NIAN, LI JIAN-ZHONG, GAO HONG, et al. Frequent subgraph pattern mining on uncertain graph data [C]// Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York: ACM Press, 2009: 583-592.[109]张硕,高宏,李建中,等.不确定图数据库中高效查询处理[J].计算机学报,2009,32(10):2066-2079.[110]邹兆年,李建中,高宏,等.从不确定图中挖掘频繁子图模式[J].软件学报,2009,20(11):2965-2976.[111]HENDRIX W, SCHMIDT M C, BREIMYER P, et al. On perturbation theory and an algorithm for maximal clique enumeration in uncertain and noisy graphs [C]// Proceedings of the 1st ACM SIGKDD Workshop on Knowledge Discovery from Uncertain Data. New York: ACM Press, 2009: 48-56.[112]ZHOU HAO, SHAVERDIAN A, JAGADISH H V. Querying graphs with uncertain predicates [C]// Proceedings of the 8th Workshop on Mining and Learning with Graphs. New York: ACM Press, 2009: 163-170.[113]CHEN LEI, WANG CHANG-LIANG. Continuous subgraph pattern search over certain and uncertain graph streams [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(8): 1093-1109.[114]AGGARWAL C C, ZHAO YU-CHEN, YU P S. On clustering graph streams [EB/OL]. [2011-04-29]. http://www.siam.org/proceedings/datamining/2010/dm10_042_aggarwalc.pdf. |
[1] | Yuxin HUANG, Jialong XU, Zhengtao YU, Shukai HOU, Jiaqi ZHOU. Unsupervised text sentiment transfer method based on generation prompt [J]. Journal of Computer Applications, 2024, 44(9): 2667-2673. |
[2] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[3] | Chun SUN, Chunlong HU, Shucheng HUANG. Consistency preserving age estimation method by ensemble ranking [J]. Journal of Computer Applications, 2024, 44(8): 2381-2386. |
[4] | Qiangkui LENG, Xuezi SUN, Xiangfu MENG. Oversampling method for imbalanced data based on sample potential and noise evolution [J]. Journal of Computer Applications, 2024, 44(8): 2466-2475. |
[5] | Quanmei ZHANG, Runping HUANG, Fei TENG, Haibo ZHANG, Nan ZHOU. Automatic international classification of disease coding method incorporating heterogeneous information [J]. Journal of Computer Applications, 2024, 44(8): 2476-2482. |
[6] | Ying YANG, Xiaoyan HAO, Dan YU, Yao MA, Yongle CHEN. Graph data generation approach for graph neural network model extraction attacks [J]. Journal of Computer Applications, 2024, 44(8): 2483-2492. |
[7] | Qing WANG, Jieyu ZHAO, Xulun YE, Nongxiao WANG. Enhanced deep subspace clustering method with unified framework [J]. Journal of Computer Applications, 2024, 44(7): 1995-2003. |
[8] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. |
[9] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[10] | Junchi GE, Weihua ZHAO. Distance weighted discriminant analysis based on robust principal component analysis for matrix data [J]. Journal of Computer Applications, 2024, 44(7): 2073-2079. |
[11] | Qianhui LU, Yu ZHANG, Mengling WANG, Tingwei WU, Yuzhong SHAN. Classification model of nuclear power equipment quality text based on improved recurrent pooling network [J]. Journal of Computer Applications, 2024, 44(7): 2034-2040. |
[12] | Xun YAO, Zhongzheng QIN, Jie YANG. Generative label adversarial text classification model [J]. Journal of Computer Applications, 2024, 44(6): 1781-1785. |
[13] | Zixuan YUAN, Xiaoqing WENG, Ningzhen GE. Early classification model of multivariate time series based on orthogonal locality preserving projection and cost optimization [J]. Journal of Computer Applications, 2024, 44(6): 1832-1841. |
[14] | Feiyu ZHAI, Handa MA. Hybrid classical-quantum classification model based on DenseNet [J]. Journal of Computer Applications, 2024, 44(6): 1905-1910. |
[15] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||