[1] MILLER G A. WordNet:a lexical database for English[J]. Communications of the ACM, 1995, 38(11):39-41.
[2] AUER S, BIZER C, KOBILAROV G, et al. DBpedia:a nucleus for a Web of open data[C]//Proceedings of the 2007 International Semantic Web Conference, LNCS 4825. Berlin:Springer, 2007:722-735.
[3] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2008:1247-1250.
[4] BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[EB/OL].[2019-01-06]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.447.6132&rep=rep1&type=pdf.
[5] WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//AAAI'14:Proceedings of the 28th AAAI Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2014:1112-1119.
[6] JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2015, 1:687-696.
[7] YANG B, YIH W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL].[2019-01-06]. https://arxiv.org/pdf/1412.6575.pdf.
[8] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[EB/OL].[2019-01-06]. https://arxiv.org/pdf/1606.06357.pdf.
[9] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//NIPS'14:Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2014, 2:2672-2680.
[10] CAI L, WANG W Y. KBGAN:adversarial learning for knowledge graph embeddings[EB/OL].[2019-01-08]. https://arxiv.org/pdf/1711.04071.pdf.
[11] WANG P, LI S, PAN R. Incorporating GAN for negative sampling in knowledge representation learning[EB/OL].[2019-01-08]. https://arxiv.org/pdf/1809.11017.pdf.
[12] TOUTANOVA K, CHEN D. Observed versus latent features for knowledge base and text inference[EB/OL].[2019-01-08]. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=332E017631F63128927CF06ABF216792?doi=10.1.1.709.9449&rep=rep1&type=pdf.
[13] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[EB/OL].[2019-01-08]. https://arxiv.org/pdf/1707.01476.pdf.
[14] LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//AAAI'15:Proceedings of the 29th AAAI Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2015:2181-2187.
[15] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//ICML'11:Proceedings of the 28th International Conference on International Conference on Machine Learning. Bellevue, Washington:Omnipress, 2011:809-816.
[16] NICKEL M, ROSASCO L, POGGIO T. Holographic embeddings of knowledge graphs[EB/OL].[2018-12-25]. https://arxiv.org/pdf/1510.04935v2.pdf.
[17] SOCHER R, CHEN D, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]//NIPS'13:Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada:Curran Associates, 2013:926-934.
[18] BOSE A J, LING H, CAO Y. Adversarial contrastive estimation[EB/OL].[2019-01-09]. https://arxiv.org/pdf/1805.03642.pdf.
[19] YU L, ZHANG W, WANG J, et al. SeqGAN:sequence generative adversarial nets with policy gradient[EB/OL].[2019-01-09]. https://arxiv.org/pdf/1609.05473.pdf.
[20] WANG J, YU L, ZHANG W, et al. IRGAN:a minimax game for unifying generative and discriminative information retrieval models[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2017:515-524.
[21] FEDUS W, GOODFELLOW I, DAI A M. MaskGAN:better text generation via filling in the_[EB/OL].[2019-01-09]. http://export.arxiv.org/pdf/1801.07736.
[22] SUTTON R S, BARTO A G. Reinforcement learning:an introduction[EB/OL].[2019-01-08]. http://users.umiacs.umd.edu/~hal/courses/2016F_RL/RL9.pdf.
[23] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[EB/OL].[2019-01-08]. https://arxiv.org/pdf/1409.3215.pdf.
[24] CHO K, van MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL].[2019-01-08]. https://arxiv.org/pdf/1406.1078.pdf.
[25] SUTTON R S, MCALLESTER D A, SINGH S P, et al. Policy gradient methods for reinforcement learning with function approximation[EB/OL].[2019-01-09]. https://www.docin.com/p-1195188340.html.
[26] WATKINS C J C H. Learning from delayed rewards[D]. Cambridge:King's College, 1989.
[27] KINGMA D P, BA J L. Adam:a method for stochastic optimization[EB/OL].[2019-01-09]. https://arxiv.org/pdf/1412.6980.pdf.
[28] DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12:2121-2159.
[29] HAN X, CAO S, LV X, et al. OpenKE:an open toolkit for knowledge embedding[EB/OL].[2019-01-09]. http://nlp.csai.tsinghua.edu.cn/~lzy/publications/emnlp2018_openke.pdf. |