Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (12): 3447-3454.DOI: 10.11772/j.issn.1001-9081.2021061129
Special Issue: 第十八届中国机器学习会议(CCML 2021)
• The 18th China Conference on Machine Learning • Previous Articles Next Articles
Xian CHEN1,2, Liying HU1,2(), Xiaowei LIN1,2, Lifei CHEN1,2,3
Received:
2021-05-12
Revised:
2021-07-02
Accepted:
2021-07-26
Online:
2021-12-28
Published:
2021-12-10
Contact:
Liying HU
About author:
CHEN Xian, born in 1997, M. S. candidate. His research interests include community detection, face recognition.Supported by:
陈献1,2, 胡丽莹1,2(), 林晓炜1,2, 陈黎飞1,2,3
通讯作者:
胡丽莹
作者简介:
陈献(1997—),男,福建莆田人,硕士研究生,主要研究方向:社区发现、人脸识别基金资助:
CLC Number:
Xian CHEN, Liying HU, Xiaowei LIN, Lifei CHEN. Directed graph clustering algorithm based on kernel nonnegative matrix factorization[J]. Journal of Computer Applications, 2021, 41(12): 3447-3454.
陈献, 胡丽莹, 林晓炜, 陈黎飞. 基于核非负矩阵分解的有向图聚类算法[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3447-3454.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021061129
数据集 | 节点数 | 边数 | 簇数 | |
---|---|---|---|---|
PCN | 149 | 215 | — | |
WebKB | Cornel | 195 | 304 | 5 |
Texas | 187 | 328 | 5 | |
Washington | 230 | 446 | 5 | |
Wisconsin | 265 | 530 | 5 | |
LFR | LFR1 | 1 000 | 15 662 | 32 |
LFR2 | 1 000 | 15 164 | 31 | |
LFR3 | 1 000 | 15 429 | 33 |
Tab. 1 Details of directed network datasets
数据集 | 节点数 | 边数 | 簇数 | |
---|---|---|---|---|
PCN | 149 | 215 | — | |
WebKB | Cornel | 195 | 304 | 5 |
Texas | 187 | 328 | 5 | |
Washington | 230 | 446 | 5 | |
Wisconsin | 265 | 530 | 5 | |
LFR | LFR1 | 1 000 | 15 662 | 32 |
LFR2 | 1 000 | 15 164 | 31 | |
LFR3 | 1 000 | 15 429 | 33 |
算法 | DB | DQF | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r=2 | r=3 | r=4 | r=5 | r=6 | r=10 | r=2 | r=3 | r=4 | r=5 | r=6 | r=10 | |
ANMF Rnd | 1.468 | 1.504 | 1.196 | 0.933 | 0.743 | 1.113 | 0.759 | 0.491 | 0.392 | 0.323 | 0.272 | 0.185 |
RANMF Rnd | 1.470 | 1.619 | 1.194 | 0.896 | 0.712 | 0.420 | 0.757 | 0.449 | 0.343 | 0.276 | 0.235 | 0.170 |
RKANMF Rnd | 1.271 | 1.424 | 1.169 | 0.896 | 0.741 | 0.505 | 0.822 | 0.541 | 0.403 | 0.335 | 0.297 | 0.250 |
DeepWalk | 2.465 | 1.508 | 1.122 | 0.896 | 0.679 | 0.399 | 0.492 | 0.357 | 0.248 | 0.211 | 0.186 | 0.117 |
ANMF SVD | 1.432 | 1.128 | 1.123 | 0.902 | 0.735 | 0.825 | 0.772 | 0.499 | 0.426 | 0.310 | 0.268 | 0.234 |
RANMF SVD | 1.431 | 1.127 | 1.151 | 0.857 | 0.714 | 0.437 | 0.771 | 0.500 | 0.423 | 0.325 | 0.247 | 0.171 |
RKANMF SVD | 1.182 | 0.909 | 1.102 | 1.090 | 0.709 | 0.394 | 0.855 | 0.770 | 0.434 | 0.353 | 0.427 | 0.376 |
Tab. 2 Comparison of DB and DQF indexes on PCN for each algorithm with different number of clusters (r)
算法 | DB | DQF | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r=2 | r=3 | r=4 | r=5 | r=6 | r=10 | r=2 | r=3 | r=4 | r=5 | r=6 | r=10 | |
ANMF Rnd | 1.468 | 1.504 | 1.196 | 0.933 | 0.743 | 1.113 | 0.759 | 0.491 | 0.392 | 0.323 | 0.272 | 0.185 |
RANMF Rnd | 1.470 | 1.619 | 1.194 | 0.896 | 0.712 | 0.420 | 0.757 | 0.449 | 0.343 | 0.276 | 0.235 | 0.170 |
RKANMF Rnd | 1.271 | 1.424 | 1.169 | 0.896 | 0.741 | 0.505 | 0.822 | 0.541 | 0.403 | 0.335 | 0.297 | 0.250 |
DeepWalk | 2.465 | 1.508 | 1.122 | 0.896 | 0.679 | 0.399 | 0.492 | 0.357 | 0.248 | 0.211 | 0.186 | 0.117 |
ANMF SVD | 1.432 | 1.128 | 1.123 | 0.902 | 0.735 | 0.825 | 0.772 | 0.499 | 0.426 | 0.310 | 0.268 | 0.234 |
RANMF SVD | 1.431 | 1.127 | 1.151 | 0.857 | 0.714 | 0.437 | 0.771 | 0.500 | 0.423 | 0.325 | 0.247 | 0.171 |
RKANMF SVD | 1.182 | 0.909 | 1.102 | 1.090 | 0.709 | 0.394 | 0.855 | 0.770 | 0.434 | 0.353 | 0.427 | 0.376 |
算法 | Cornell | Texas | Washington | Wisconsin | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jaccard | NMI | AC | Jaccard | NMI | AC | Jaccard | NMI | AC | Jaccard | NMI | AC | |
ANMF Rnd | 0.185 | 0.143 | 0.369 | 0.218 | 0.153 | 0.375 | 0.196 | 0.138 | 0.357 | 0.168 | 0.688 | 0.323 |
RANMF Rnd | 0.287 | 0.169 | 0.459 | 0.332 | 0.164 | 0.518 | 0.287 | 0.169 | 0.477 | 0.240 | 0.078 | 0.459 |
RKANMF Rnd | 0.291 | 0.189 | 0.479 | 0.340 | 0.166 | 0.527 | 0.290 | 0.164 | 0.484 | 0.245 | 0.079 | 0.468 |
DeepWalk | 0.178 | 0.077 | 0.323 | 0.258 | 0.095 | 0.439 | 0.178 | 0.044 | 0.365 | 0.171 | 0.079 | 0.347 |
ANMF SVD | 0.188 | 0.097 | 0.354 | 0.349 | 0.225 | 0.551 | 0.245 | 0.103 | 0.452 | 0.226 | 0.076 | 0.423 |
RANMF SVD | 0.203 | 0.127 | 0.379 | 0.416 | 0.194 | 0.594 | 0.375 | 0.209 | 0.543 | 0.270 | 0.085 | 0.502 |
RKANMF SVD | 0.267 | 0.190 | 0.462 | 0.428 | 0.210 | 0.615 | 0.382 | 0.222 | 0.604 | 0.282 | 0.101 | 0.536 |
Tab. 3 Result comparison of different algorithms on WebKB dataset
算法 | Cornell | Texas | Washington | Wisconsin | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jaccard | NMI | AC | Jaccard | NMI | AC | Jaccard | NMI | AC | Jaccard | NMI | AC | |
ANMF Rnd | 0.185 | 0.143 | 0.369 | 0.218 | 0.153 | 0.375 | 0.196 | 0.138 | 0.357 | 0.168 | 0.688 | 0.323 |
RANMF Rnd | 0.287 | 0.169 | 0.459 | 0.332 | 0.164 | 0.518 | 0.287 | 0.169 | 0.477 | 0.240 | 0.078 | 0.459 |
RKANMF Rnd | 0.291 | 0.189 | 0.479 | 0.340 | 0.166 | 0.527 | 0.290 | 0.164 | 0.484 | 0.245 | 0.079 | 0.468 |
DeepWalk | 0.178 | 0.077 | 0.323 | 0.258 | 0.095 | 0.439 | 0.178 | 0.044 | 0.365 | 0.171 | 0.079 | 0.347 |
ANMF SVD | 0.188 | 0.097 | 0.354 | 0.349 | 0.225 | 0.551 | 0.245 | 0.103 | 0.452 | 0.226 | 0.076 | 0.423 |
RANMF SVD | 0.203 | 0.127 | 0.379 | 0.416 | 0.194 | 0.594 | 0.375 | 0.209 | 0.543 | 0.270 | 0.085 | 0.502 |
RKANMF SVD | 0.267 | 0.190 | 0.462 | 0.428 | 0.210 | 0.615 | 0.382 | 0.222 | 0.604 | 0.282 | 0.101 | 0.536 |
算法 | LFR1 | LFR2 | LFR3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Jaccard | NMI | AC | Jaccard | NMI | AC | Jaccard | NMI | AC | |
ANMF Rnd | 0.234 | 0.629 | 0.399 | 0.287 | 0.660 | 0.469 | 0.201 | 0.570 | 0.399 |
RANMF Rnd | 0.176 | 0.570 | 0.344 | 0.253 | 0.620 | 0.436 | 0.182 | 0.540 | 0.369 |
RKANMF Rnd | 0.163 | 0.576 | 0.320 | 0.272 | 0.647 | 0.456 | 0.159 | 0.530 | 0.353 |
DeepWalk | 1.000 | 1.000 | 1.000 | 0.920 | 0.992 | 0.956 | 0.875 | 0.982 | 0.925 |
ANMF SVD | 1.000 | 1.000 | 1.000 | 0.925 | 0.982 | 0.955 | 0.843 | — | 0.912 |
RANMF SVD | 1.000 | 1.000 | 1.000 | 0.925 | 0.982 | 0.955 | 0.837 | 0.959 | 0.915 |
RKANMF SVD | 1.000 | 1.000 | 1.000 | 0.926 | 0.983 | 0.957 | 0.877 | 0.978 | 0.930 |
Tab. 4 Result comparison of different algorithms on LFR network dataset
算法 | LFR1 | LFR2 | LFR3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Jaccard | NMI | AC | Jaccard | NMI | AC | Jaccard | NMI | AC | |
ANMF Rnd | 0.234 | 0.629 | 0.399 | 0.287 | 0.660 | 0.469 | 0.201 | 0.570 | 0.399 |
RANMF Rnd | 0.176 | 0.570 | 0.344 | 0.253 | 0.620 | 0.436 | 0.182 | 0.540 | 0.369 |
RKANMF Rnd | 0.163 | 0.576 | 0.320 | 0.272 | 0.647 | 0.456 | 0.159 | 0.530 | 0.353 |
DeepWalk | 1.000 | 1.000 | 1.000 | 0.920 | 0.992 | 0.956 | 0.875 | 0.982 | 0.925 |
ANMF SVD | 1.000 | 1.000 | 1.000 | 0.925 | 0.982 | 0.955 | 0.843 | — | 0.912 |
RANMF SVD | 1.000 | 1.000 | 1.000 | 0.925 | 0.982 | 0.955 | 0.837 | 0.959 | 0.915 |
RKANMF SVD | 1.000 | 1.000 | 1.000 | 0.926 | 0.983 | 0.957 | 0.877 | 0.978 | 0.930 |
1 | NEWMAN M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2): 167-256. 10.1137/s003614450342480 |
2 | 章永来,周耀鉴. 聚类算法综述[J]. 计算机应用, 2019, 39(7): 1869-1882. 10.11772/j.issn.1001-9081.2019010174 |
ZHANG Y L, ZHOU Y J. Review of clustering algorithms[J]. Journal of Computer Applications, 2019, 39(7): 1869-1882. 10.11772/j.issn.1001-9081.2019010174 | |
3 | NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(2): No.026113. 10.1103/physreve.69.026113 |
4 | BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10): No.P10008. 10.1088/1742-5468/2008/10/p10008 |
5 | 蔡晓妍,戴冠中,杨黎斌. 谱聚类算法综述[J]. 计算机科学, 2008, 35(7): 14-18. 10.3969/j.issn.1002-137X.2008.07.004 |
CAI X Y, DAI G Z, YANG L B. Survey on spectral clustering algorithms[J]. Computer Science, 2008, 35(7): 14-18. 10.3969/j.issn.1002-137X.2008.07.004 | |
6 | SATULURI V, PARTHASARATHY S. Symmetrizations for clustering directed graphs[C]// Proceedings of the 14th International Conference on Extending Database Technology. New York: ACM, 2011: 343-354. 10.1145/1951365.1951407 |
7 | LUXBURG U VON. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4): 395-416. 10.1007/s11222-007-9033-z |
8 | NASCIMENTO M C V, DE CARVALHO A C P L F. Spectral methods for graph clustering — a survey[J]. European Journal of Operational Research, 2011, 211(2): 221-231. 10.1016/j.ejor.2010.08.012 |
9 | ZHOU D Y, HUANG J Y, SCHÖLKOPF B. Learning from labeled and unlabeled data on a directed graph[C]// Proceedings of the 22nd International Conference on Machine Learning. New York: ACM, 2005: 1036-1043. 10.1145/1102351.1102482 |
10 | LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791. 10.1038/44565 |
11 | WANG F, LI T, WANG X, et al. Community discovery using nonnegative matrix factorization[J]. Data Mining and Knowledge Discovery, 2011, 22(3): 493-521. 10.1007/s10618-010-0181-y |
12 | TOSYALI A, KIM J, CHOI J, et al. Regularized asymmetric nonnegative matrix factorization for clustering in directed networks[J]. Pattern Recognition Letters, 2019, 125: 750-757. 10.1016/j.patrec.2019.07.005 |
13 | PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710. 10.1145/2623330.2623732 |
14 | WANG Y X, ZHANG Y J. Nonnegative matrix factorization: a comprehensive review[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(6): 1336-1353. 10.1109/tkde.2012.51 |
15 | ZHAO X M, ZHANG S Q. Facial expression recognition using kernel locality preserving projections[M]// JIN D, LIN S. Advances in Electron Engineering, Communication and Management Vol.2, LNEE140. Berlin: Springer, 2012: 713-718. |
16 | ZAFEIRIOU S, PETROU M. Nonlinear non-negative component analysis algorithms[J]. IEEE Transactions on Image Processing, 2010, 19(4): 1050-1066. 10.1109/tip.2009.2038816 |
17 | BUCIU I, NIKOLAIDIS N, PITAS I. Nonnegative matrix factorization in polynomial feature space[J]. IEEE Transactions on Neural Networks, 2008, 19(6): 1090-1100. 10.1109/tnn.2008.2000162 |
18 | ZHU F, HONEINE P, KALLAS M. Kernel nonnegative matrix factorization without the pre-image problem[C]// Proceedings of the 2014 IEEE International Workshop on Machine Learning for Signal Processing. Piscataway: IEEE, 2014: 1-6. 10.1109/mlsp.2014.6958910 |
19 | NEWMAN M E J. Networks: An Introduction[M]. Oxford: Oxford University Press, 2010: 172-175, 212-214. |
20 | XU W, LIU X, GONG Y H. Document clustering based on non-negative matrix factorization[C]// Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2003: 267-273. 10.1145/860435.860485 |
21 | CHEN W S, LIU J M, PAN B B, et al. Face recognition using nonnegative matrix factorization with fractional power inner product kernel[J]. Neurocomputing, 2019, 348: 40-53. 10.1016/j.neucom.2018.06.083 |
22 | LEE D D, SEUNG H S. Algorithms for non-negative matrix factorization[C]// Proceedings of the 13th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2000: 534-541. |
23 | ROSVALL M, BERGSTROM C T. Maps of random walks on complex networks reveal community structure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 105(4): 1118-1123. 10.1371/journal.pone.0018209 |
24 | GHANI R, JONES R, McCALLUM A, et al. CMU World Wide Knowledge Base (Web->KB) project[DS/OL]. (2001-01) [2020-10-14].. |
25 | LANCICHINETTI A, FORTUNATO S. Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2009, 80(1): No.016118. 10.1103/physreve.80.016118 |
26 | DAVIES D L, BOULDIN D W. A clusters separation measure[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1979, PAMI-1(2): 224-227. 10.1109/tpami.1979.4766909 |
27 | KEHAGIAS A, PITSOULIS L. Bad communities with high modularity[J]. The European Physical Journal B, 2013, 86(7): No.330. 10.1140/epjb/e2013-40169-1 |
28 | DANON L, DÍAZ-GUILERA A, DUCH J, et al. Comparing community structure identification[J]. Journal of Statistical Mechanics: Theory and Experiment, 2005, 2005(9): No.P09008. 10.1088/1742-5468/2005/09/p09008 |
[1] | Shuaihua ZHANG, Shufen ZHANG, Mingchuan ZHOU, Chao XU, Xuebin CHEN. Malicious traffic detection model based on semi-supervised federated learning [J]. Journal of Computer Applications, 2024, 44(11): 3487-3494. |
[2] | Jie WU, Xuezhong QIAN, Wei SONG. Personalized federated learning based on similarity clustering and regularization [J]. Journal of Computer Applications, 2024, 44(11): 3345-3353. |
[3] | Mengjie LAN, Jianping CAI, Lan SUN. Self-regularization optimization methods for Non-IID data in federated learning [J]. Journal of Computer Applications, 2023, 43(7): 2073-2081. |
[4] | Lin ZHOU, Yuzhi XIAO, Peng LIU, Youpeng QIN. Community mining algorithm based on multi-relationship of nodes and its application [J]. Journal of Computer Applications, 2023, 43(5): 1489-1496. |
[5] | Wenbo LI, Bo LIU, Lingling TAO, Fen LUO, Hang ZHANG. Deep spectral clustering algorithm with L1 regularization [J]. Journal of Computer Applications, 2023, 43(12): 3662-3667. |
[6] | Yang LI, Anbiao WU, Ye YUAN, Linlin ZHAO, Guoren WANG. Unsupervised attributed graph embedding model based on node similarity [J]. Journal of Computer Applications, 2022, 42(1): 1-8. |
[7] | Yue YANG, Shitong WANG. Four-layer multiple kernel learning method based on random feature mapping [J]. Journal of Computer Applications, 2022, 42(1): 16-25. |
[8] | Lili FAN, Guifu LU, Ganyi TANG, Dan YANG. Low-rank representation subspace clustering method based on Hessian regularization and non-negative constraint [J]. Journal of Computer Applications, 2022, 42(1): 115-122. |
[9] | LIN Junchao, WAN Yuan. Self-adaptive multi-measure unsupervised feature selection method with structured graph optimization [J]. Journal of Computer Applications, 2021, 41(5): 1282-1289. |
[10] | Qian LIU, Hongyuan WANG, Liang CAO, Boyan SUN, Yu XIAO, Ji ZHANG. Cloth-changing person re-identification based on joint loss capsule network [J]. Journal of Computer Applications, 2021, 41(12): 3596-3601. |
[11] | Hua LI, Guifu LU, Qinru YU. Manifold regularized nonnegative matrix factorization based on clean data [J]. Journal of Computer Applications, 2021, 41(12): 3492-3498. |
[12] | SHEN Marui, LI Jincheng, ZHANG Ya, ZOU Jian. Magnetic resonance image reconstruction algorithm via non-convex total variation regularization [J]. Journal of Computer Applications, 2020, 40(8): 2358-2364. |
[13] | WANG Zhiyuan, JIANG Ailian, MUHAMMAD Osman. Unsupervised feature selection method based on regularized mutual representation [J]. Journal of Computer Applications, 2020, 40(7): 1896-1900. |
[14] | XIE Qi, XU Xu, CHENG Gengguo, CHEN Heping. Feature selection algorithm based on new forest optimization algorithm [J]. Journal of Computer Applications, 2020, 40(5): 1266-1271. |
[15] | GENG Yuanqian, WU Chuansheng, LIU Wen. Mixed non-convex and non-smooth regularization constraint based blind image restoration [J]. Journal of Computer Applications, 2020, 40(4): 1171-1176. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||