Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (1): 287-293.DOI: 10.11772/j.issn.1001-9081.2021010099
• Frontier and comprehensive applications • Previous Articles Next Articles
Donglin MA, Sizhou MA(), Weijie WANG
Received:
2021-01-18
Revised:
2021-03-01
Accepted:
2021-03-30
Online:
2021-04-15
Published:
2022-01-10
Contact:
Sizhou MA
About author:
MA Donglin, born in 1971, associate professor. His research interests include intelligent information processing, pattern recognition, deep learning.Supported by:
通讯作者:
马司周
作者简介:
马栋林(1971—),男,甘肃兰州人,副教授,主要研究方向:智能信息处理、模式识别、深度学习基金资助:
CLC Number:
Donglin MA, Sizhou MA, Weijie WANG. Multi-site temperature prediction model based on graph convolutional network and gated recurrent unit[J]. Journal of Computer Applications, 2022, 42(1): 287-293.
马栋林, 马司周, 王伟杰. 基于图卷积网络和门控循环单元的多站点气温预测模型[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 287-293.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021010099
名称 | 版本 |
---|---|
操作系统 | Ubuntu 18.04.2 |
编程语言 | Python 3.6.10 |
CPU | Intel Core i5-9600KF |
GPU | NVIDIA GeForce GTX1660 SUPER |
框架 | PyTorch1.4 |
Tab. 1 Experimental environment
名称 | 版本 |
---|---|
操作系统 | Ubuntu 18.04.2 |
编程语言 | Python 3.6.10 |
CPU | Intel Core i5-9600KF |
GPU | NVIDIA GeForce GTX1660 SUPER |
框架 | PyTorch1.4 |
模型 | MAE | MAPE/% | RMSE |
---|---|---|---|
CNN | 2.77 | 16.63 | 2.28 |
GRU | 1.90 | 11.59 | 2.17 |
LSTM | 2.06 | 12.65 | 2.38 |
GCN | 1.95 | 14.62 | 2.25 |
ChebNet | 1.85 | 11.66 | 1.99 |
BLSTM-GRU | 1.48 | 8.88 | 1.89 |
Cheb-LSTM | 1.59 | 9.73 | 1.84 |
GCN-LSTM | 1.46 | 8.60 | 1.77 |
GCN-GRU | 1.23 | 6.94 | 1.50 |
Tab. 2 Temperature prediction error of different models
模型 | MAE | MAPE/% | RMSE |
---|---|---|---|
CNN | 2.77 | 16.63 | 2.28 |
GRU | 1.90 | 11.59 | 2.17 |
LSTM | 2.06 | 12.65 | 2.38 |
GCN | 1.95 | 14.62 | 2.25 |
ChebNet | 1.85 | 11.66 | 1.99 |
BLSTM-GRU | 1.48 | 8.88 | 1.89 |
Cheb-LSTM | 1.59 | 9.73 | 1.84 |
GCN-LSTM | 1.46 | 8.60 | 1.77 |
GCN-GRU | 1.23 | 6.94 | 1.50 |
模型 | MAE | MAPE/% | RMSE |
---|---|---|---|
GCN-GRU(No-modified) | 1.63 | 10.16 | 1.91 |
GCN-GRU | 1.23 | 6.94 | 1.50 |
Tab. 3 Temperature prediction error results of GCN-GRU with graph convolution without modification and GCN-GRU
模型 | MAE | MAPE/% | RMSE |
---|---|---|---|
GCN-GRU(No-modified) | 1.63 | 10.16 | 1.91 |
GCN-GRU | 1.23 | 6.94 | 1.50 |
1 | BEVERE L, GLOOR M, SOBEL A. Natural catastrophes in times of economic accumulation and climate change[R/OL]. (2020-11-02) [2020-12-05].. |
2 | LIU J N K, KWONG K M, CHAN P W. Chaotic oscillatory based neural network for wind shear and turbulence forecast with LiDAR data[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2012, 42(6): 1412-1423. 10.1109/tsmcc.2012.2188284 |
3 | KWONG K M, WONG M H Y, LIU J N K, et al. An artificial neural network with chaotic oscillator for wind shear alerting[J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(10): 1518-1531. 10.1175/2011jtecha1501.1 |
4 | KRISHNAVENI N, PADMA A. Weather forecast prediction and analysis using sprint algorithm[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(5):4901-4909. 10.1007/s12652-020-01928-w |
5 | LI Y G, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[EB/OL]. (2018-02-22) [2020-09-05].. 10.1109/ictai50040.2020.00063 |
6 | YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. [S. l.]: ijcai.org, 2018: 3634-3640. 10.24963/ijcai.2018/505 |
7 | HOSSAIN M, REKABDAR B, LOUIS S J, et al. Forecasting the weather of Nevada: a deep learning approach[C]// Proceedings of the 2015 International Joint Conference on Neural Networks. Piscataway: IEEE, 2015:1-6. 10.1109/ijcnn.2015.7280812 |
8 | LI Y P, LANG J W, JI L, et al. Weather forecasting using ensemble of spatial-temporal attention network and multi-layer perceptron[J]. Asia-Pacific Journal of Atmospheric Sciences, 2021, 57(3):533-546. 10.1007/s13143-020-00212-3 |
9 | JIA P C, CAO N W, YANG S B. Real-time hourly ozone prediction system for Yangtze River Delta area using attention based on a sequence to sequence model[J]. Atmospheric Environment, 2021, 244: No.117917. 10.1016/j.atmosenv.2020.117917 |
10 | WEI C C. Development of stacked long short-term memory neural networks with numerical solutions for wind velocity predictions[J]. Advances in Meteorology, 2020, 2020: No.5462040. 10.1155/2020/5462040 |
11 | KIM K S, LEE J B, ROH M I, et al. Prediction of ocean weather based on denoising autoencoder and convolutional LSTM[J]. Journal of Marine Science and Engineering, 2020, 8(10): No.805. 10.3390/jmse8100805 |
12 | HAM Y G, KIM J H, LUO J J. Deep learning for multi-year ENSO forecasts[J]. Nature, 2019, 573(7775): 568-572. 10.1038/s41586-019-1559-7 |
13 | CHHETRI M, KUMAR S, ROY P P, et al. Deep BLSTM-GRU model for monthly rainfall prediction: a case study of Simtokha, Bhutan[J]. Remote Sensing, 2020, 12(19): No.3174. 10.3390/rs12193174 |
14 | 杨涵. 基于深度学习的气象预测研究[D]. 哈尔滨:哈尔滨工业大学, 2017:4-8. 10.5176/2301-394x_ace17.54 |
YANG H. Research on meteorological forecasting based on deep learning[D]. Harbin: Harbin Institute of Technology, 2017:4-8. 10.5176/2301-394x_ace17.54 | |
15 | WILSON T, TAN P N, LUO L F, et al. A low rank weighted graph convolutional approach to weather prediction[C]// Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 627-636. 10.1109/icdm.2018.00078 |
16 | ZHOU J, CUI G Q, HU S D, et al. Graph neural networks: a review of methods and applications[J]. AI Open, 2020, 1:57-81. 10.1016/j.aiopen.2021.01.001 |
17 | DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016: 3844-3852. |
18 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2020-11-20].. |
19 | HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing. Red Hook, NY: Curran Associates Inc., 2017: 1025-1035. 10.1145/3219819.3219890 |
20 | WU F, ZHANG T Y, DE SOUZA A H, et al. Simplifying graph convolutional networks[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 6861-6871. |
21 | 徐冰冰,岑科廷,黄俊杰,等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5):755-780. 10.11897/SP.J.1016.2020.00755 |
XU B B, CEN K Y, HUANG J J, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5):755-780. 10.11897/SP.J.1016.2020.00755 | |
22 | BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166. 10.1109/72.279181 |
23 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. 10.1162/neco.1997.9.8.1735 |
24 | CHO K, MERRIËNBOER B VAN, GU̇LÇEHRE Ç, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]// Proceedings of the 2014 Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2014: 1724-1734. 10.3115/v1/d14-1179 |
25 | LI Q M, HAN Z C, WU X M, et al. Deeper insights into graph convolutional networks for semi-supervised learning[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 3538-3545. |
26 | CHEN Z M, WEI X S, WANG P, et al. Multi-label image recognition with graph convolutional networks[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5172-5181. 10.1109/cvpr.2019.00532 |
27 | KLICPERA J, BOJCHEVSKI A, GÜNNEMANN S. Predict then propagate: graph neural networks meet personalized pagerank[EB/OL]. (2019-02-27) [2020-09-03].. 10.1145/3394486.3403296 |
[1] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[2] | Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems [J]. Journal of Computer Applications, 2024, 44(9): 2855-2862. |
[3] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[4] | Shibin LI, Jun GONG, Shengjun TANG. Semi-supervised heterophilic graph representation learning model based on Graph Transformer [J]. Journal of Computer Applications, 2024, 44(6): 1816-1823. |
[5] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. |
[6] | Longtao GAO, Nana LI. Aspect sentiment triplet extraction based on aspect-aware attention enhancement [J]. Journal of Computer Applications, 2024, 44(4): 1049-1057. |
[7] | Xianfeng YANG, Yilei TANG, Ziqiang LI. Aspect-level sentiment analysis model based on alternating‑attention mechanism and graph convolutional network [J]. Journal of Computer Applications, 2024, 44(4): 1058-1064. |
[8] | Kaitian WANG, Qing YE, Chunlei CHENG. Classification method for traditional Chinese medicine electronic medical records based on heterogeneous graph representation [J]. Journal of Computer Applications, 2024, 44(2): 411-417. |
[9] | Zucheng WU, Xiaojun WU, Tianyang XU. Image-text retrieval model based on intra-modal fine-grained feature relationship extraction [J]. Journal of Computer Applications, 2024, 44(12): 3776-3783. |
[10] | Xinrong HU, Jingxue CHEN, Zijian HUANG, Bangchao WANG, Xun YAO, Junping LIU, Qiang ZHU, Jie YANG. Graph convolution network-based masked data augmentation [J]. Journal of Computer Applications, 2024, 44(11): 3335-3344. |
[11] | Nengqiang XIANG, Xiaofei ZHU, Zhaoze GAO. Information diffusion prediction model of prototype-aware dual-channel graph convolutional neural network [J]. Journal of Computer Applications, 2024, 44(10): 3260-3266. |
[12] | Yanbo LI, Qing HE, Shunyi LU. Aspect sentiment triplet extraction integrating semantic and syntactic information [J]. Journal of Computer Applications, 2024, 44(10): 3275-3280. |
[13] | Wanting JI, Wenyi LU, Yuhang MA, Linlin DING, Baoyan SONG, Haolin ZHANG. Machine reading comprehension event detection based on relation-enhanced graph convolutional network [J]. Journal of Computer Applications, 2024, 44(10): 3288-3293. |
[14] | Hanxiao SHI, Leichun WANG. Short-term power load forecasting by graph convolutional network combining LSTM and self-attention mechanism [J]. Journal of Computer Applications, 2024, 44(1): 311-317. |
[15] | Li XU, Xiangyuan FU, Haoran LI. Spatial-temporal traffic flow prediction model based on gated convolution [J]. Journal of Computer Applications, 2023, 43(9): 2760-2765. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||