Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (3): 921-929.DOI: 10.11772/j.issn.1001-9081.2021030431
• Cyber security • Previous Articles Next Articles
Received:
2021-03-22
Revised:
2021-07-27
Accepted:
2021-07-29
Online:
2022-04-09
Published:
2022-03-10
Contact:
Shenkai GU
About author:
ZHAO Yuming, born in 1996, M. S. candidate. His research interests include deep learning, defense of adversarial attacks.
Supported by:
通讯作者:
顾慎凯
作者简介:
赵玉明(1996—),男,江苏盐城人,硕士研究生,主要研究方向:深度学习、对抗攻击防御;
基金资助:
CLC Number:
Yuming ZHAO, Shenkai GU. Adversarial attack defense model with residual dense block self-attention mechanism and generative adversarial network[J]. Journal of Computer Applications, 2022, 42(3): 921-929.
赵玉明, 顾慎凯. 融合残差密集块自注意力机制和生成对抗网络的对抗攻击防御模型[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 921-929.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021030431
超参数 | 设置 |
---|---|
Batch-size | 64 |
Epoch | 250 |
判别器与生成器迭代参数更新比例 | 2∶1 |
Adam优化器 | lr=0.000 2, β1=0, β2=0.9 |
损失函数损失项α、β | α=0.5, β=0.5 |
迭代周期 | 50 |
Tab. 1 Hyperparameters settings
超参数 | 设置 |
---|---|
Batch-size | 64 |
Epoch | 250 |
判别器与生成器迭代参数更新比例 | 2∶1 |
Adam优化器 | lr=0.000 2, β1=0, β2=0.9 |
损失函数损失项α、β | α=0.5, β=0.5 |
迭代周期 | 50 |
训练扰 动阈值 | 测试扰动阈值 | ||||
---|---|---|---|---|---|
0.000 | 0.015 | 0.035 | 0.055 | 0.070 | |
0.01 | 75.76 | 66.67 | 46.07 | 30.09 | 20.71 |
0.02 | 75.98 | 67.56 | 47.30 | 32.69 | 21.89 |
0.03 | 75.34 | 65.75 | 45.73 | 29.89 | 19.37 |
0.04 | 74.56 | 65.26 | 45.32 | 29.77 | 20.29 |
0.05 | 75.11 | 65.88 | 43.03 | 27.33 | 19.67 |
Tab. 2 Influence of disturbance threshold on rate of successful defense
训练扰 动阈值 | 测试扰动阈值 | ||||
---|---|---|---|---|---|
0.000 | 0.015 | 0.035 | 0.055 | 0.070 | |
0.01 | 75.76 | 66.67 | 46.07 | 30.09 | 20.71 |
0.02 | 75.98 | 67.56 | 47.30 | 32.69 | 21.89 |
0.03 | 75.34 | 65.75 | 45.73 | 29.89 | 19.37 |
0.04 | 74.56 | 65.26 | 45.32 | 29.77 | 20.29 |
0.05 | 75.11 | 65.88 | 43.03 | 27.33 | 19.67 |
攻击算法 | 防御模型 | 不同扰动阈值 | |||
---|---|---|---|---|---|
0.015 | 0.035 | 0.055 | 0.070 | ||
FGSM | RD-DefGAN | 75.4 | 56.1 | 39.7 | 31.6 |
RD-SA-DefGAN | 78.3 | 58.7 | 44.0 | 35.3 | |
BIM | RD-DefGAN | 72.9 | 50.5 | 35.4 | 26.9 |
RD-SA-DefGAN | 74.1 | 53.7 | 39.4 | 29.3 | |
PGD | RD-DefGAN | 67.5 | 47.3 | 32.7 | 21.9 |
RD-SA-DefGAN | 69.4 | 49.5 | 34.8 | 24.4 |
Tab. 3 Rates of successful defense under different attack algorithms
攻击算法 | 防御模型 | 不同扰动阈值 | |||
---|---|---|---|---|---|
0.015 | 0.035 | 0.055 | 0.070 | ||
FGSM | RD-DefGAN | 75.4 | 56.1 | 39.7 | 31.6 |
RD-SA-DefGAN | 78.3 | 58.7 | 44.0 | 35.3 | |
BIM | RD-DefGAN | 72.9 | 50.5 | 35.4 | 26.9 |
RD-SA-DefGAN | 74.1 | 53.7 | 39.4 | 29.3 | |
PGD | RD-DefGAN | 67.5 | 47.3 | 32.7 | 21.9 |
RD-SA-DefGAN | 69.4 | 49.5 | 34.8 | 24.4 |
数据集 | 防御模型 | 不同扰动阈值 | ||||
---|---|---|---|---|---|---|
0.000 | 0.015 | 0.035 | 0.055 | 0.070 | ||
CIFAR10 | Adv.Training | 80.3 | 58.3 | 31.1 | 15.5 | 10.3 |
Adv-BNN | 79.7 | 68.7 | 45.4 | 26.9 | 18.6 | |
Rob-GAN | 71.6 | 60.3 | 43.8 | 28.6 | 19.4 | |
RD-DefGAN | 75.8 | 67.5 | 47.3 | 32.1 | 22.7 | |
RD-SA-DefGAN | 76.1 | 69.4 | 49.5 | 34.8 | 24.4 | |
STL10 | Adv.Training | 63.2 | 46.7 | 27.4 | 12.8 | 7.0 |
Adv-BNN | 59.9 | 51.8 | 37.6 | 27.4 | 21.1 | |
Rob-GAN | 62.1 | 52.3 | 41.8 | 32.3 | 23.2 | |
RD-DefGAN | 69.3 | 53.6 | 40.2 | 30.7 | 26.0 | |
RD-SA-DefGAN | 70.1 | 55.5 | 43.9 | 33.1 | 26.3 | |
ImageNet20 | Adv.Training | 62.1 | 40.6 | 27.1 | 16.4 | 14.6 |
Adv-BNN | 60.9 | 44.3 | 31.2 | 22.5 | 17.3 | |
Rob-GAN | 50.7 | 40.4 | 27.8 | 18.0 | 16.3 | |
RD-DefGAN | 51.3 | 40.2 | 28.1 | 20.5 | 17.8 | |
RD-SA-DefGAN | 55.4 | 45.1 | 31.5 | 23.3 | 18.1 |
Tab. 4 Rates of successful defense under PGD attack by various defense models
数据集 | 防御模型 | 不同扰动阈值 | ||||
---|---|---|---|---|---|---|
0.000 | 0.015 | 0.035 | 0.055 | 0.070 | ||
CIFAR10 | Adv.Training | 80.3 | 58.3 | 31.1 | 15.5 | 10.3 |
Adv-BNN | 79.7 | 68.7 | 45.4 | 26.9 | 18.6 | |
Rob-GAN | 71.6 | 60.3 | 43.8 | 28.6 | 19.4 | |
RD-DefGAN | 75.8 | 67.5 | 47.3 | 32.1 | 22.7 | |
RD-SA-DefGAN | 76.1 | 69.4 | 49.5 | 34.8 | 24.4 | |
STL10 | Adv.Training | 63.2 | 46.7 | 27.4 | 12.8 | 7.0 |
Adv-BNN | 59.9 | 51.8 | 37.6 | 27.4 | 21.1 | |
Rob-GAN | 62.1 | 52.3 | 41.8 | 32.3 | 23.2 | |
RD-DefGAN | 69.3 | 53.6 | 40.2 | 30.7 | 26.0 | |
RD-SA-DefGAN | 70.1 | 55.5 | 43.9 | 33.1 | 26.3 | |
ImageNet20 | Adv.Training | 62.1 | 40.6 | 27.1 | 16.4 | 14.6 |
Adv-BNN | 60.9 | 44.3 | 31.2 | 22.5 | 17.3 | |
Rob-GAN | 50.7 | 40.4 | 27.8 | 18.0 | 16.3 | |
RD-DefGAN | 51.3 | 40.2 | 28.1 | 20.5 | 17.8 | |
RD-SA-DefGAN | 55.4 | 45.1 | 31.5 | 23.3 | 18.1 |
1 | DONG S, WANG P, ABBAS K. A survey on deep learning and its applications [J]. Computer Science Review, 2021, 40: 100379. 10.1016/j.cosrev.2021.100379 |
2 | CHAKRABORTY A, ALAM M, DEY V, et al. Adversarial attacks and defences: a survey [EB/OL]. [2018-10-28]. . 10.1049/cit2.12028 |
3 | SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks [EB/OL]. [2020-06-22]. . |
4 | GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples [EB/OL]. [2020-06-22]. . |
5 | MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks [EB/OL]. [2017-06-19]. . |
6 | MOOSAVI-DEZFOOLI S M, FAWZI A, FROSSARD P. DeepFool: a simple and accurate method to fool deep neural networks [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2574-2582. 10.1109/cvpr.2016.282 |
7 | HE Z, RAKIN A S, FAN D. Parametric noise injection: trainable randomness to improve deep neural network robustness against adversarial attack [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 588-597. 10.1109/cvpr.2019.00068 |
8 | JEDDI A, SHAFIEE M J, KARG M, et al. Learn2Perturb: an end-to-end feature perturbation learning to improve adversarial robustness [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1241-1250. 10.1109/cvpr42600.2020.00132 |
9 | KHONG T T T, NAKADA T, NAKASHIMA Y. Bayes without Bayesian learning for resisting adversarial attacks [C]// Proceedings of the 2020 8th International Symposium on Computing and Networking. Piscataway: IEEE, 2020: 221-227. 10.1109/candar51075.2020.00038 |
10 | WICKER M, LAURENTI L, PATANE A, et al. Bayesian inference with certifiable adversarial robustness [EB/OL]. [2020-06-22].. |
11 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge, MA: MIT Press, 2014: 2672-2680. |
12 | GUI J, SUN Z, WEN Y, et al. A review on generative adversarial networks: algorithms, theory, and applications [EB/OL]. [2020-01-20]. . 10.1109/tkde.2021.3130191 |
13 | MIRZA M, OSINDERO S. Conditional generative adversarial nets [EB/OL]. [2014-11-06]. . |
14 | RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks [EB/OL]. [2020-06-22]. . |
15 | ARJOVSKY M, CHINTALA S, BOTTOU L, et al. Wasserstein generative adversarial networks [C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR, 2017: 214-223. |
16 | MIYATO T, KATAOKA T, KOYAMA M, et al. Spectral normalization for generative adversarial networks [EB/OL]. [2018-02-16]. . 10.1007/978-3-030-03243-2_860-1 |
17 | PAN Z, YU W, YI X, et al. Recent progress on Generative Adversarial Networks (GANs): a survey [J]. IEEE Access, 2019, 7: 36322-36333. 10.1109/access.2019.2905015 |
18 | ODENA A, OLAH C, SHLENS J. Conditional image synthesis with auxiliary classifier GAN [C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR, 2017: 2642-2651. |
19 | 唐贤伦, 杜一铭, 刘雨微, 等. 基于条件深度卷积生成对抗网络的图像识别方法. 自动化学报, 2018, 44(5): 855-864.(TANG X L, DU Y M, LIU Y W,et al. Image recognition with conditional deep convolutional generative adversarial networks [J]. Acta Automatica Sinica, 2018, 44(5): 855-864.) |
20 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large [EB/OL]. [2014-09-04]. . |
21 | ZHU L, CHEN Y, GHAMISI P, et al. Generative adversarial networks for hyperspectral image classification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5046-5063. 10.1109/tgrs.2018.2805286 |
22 | LIU X, HSIEH C J. Rob-GAN: Generator, discriminator, and adversarial attacker [C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 11234-11243. 10.1109/cvpr.2019.01149 |
23 | ZHANG Y, TIAN Y, KONG Y, et al. Residual dense network for image super-resolution [C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2472-2481. 10.1109/cvpr.2018.00262 |
24 | ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks [C]// Proceedings of the 2019 International Conference on Machine Learning. New York: JMLR, 2019: 7354-7363. |
25 | KURAKIN A, GOODFELLOW I, BENGIO S. Adversarial examples in the physical world [EB/OL]. [2016-07-08]. . 10.1201/9781351251389-8 |
26 | TRAMER F, KURAKIN A, PAPERNOT N, et al. Ensemble adversarial training: attacks and defenses [EB/OL]. [2017-05-19]. . |
27 | KABILAN V M, MORRIS B, NGUYEN H P, et al. VectorDefense: vectorization as a defense to adversarial examples [J]. Soft Computing for Biomedical Applications and Related Topics, 2020, 899(13): 19. 10.1007/978-3-030-49536-7_3 |
28 | CHENG Y, WEI X, FU H, et al. Defense for adversarial videos by self-adaptive JPEG compression and optical texture [C]// Proceedings of the 2nd ACM International Conference on Multimedia in Asia. New York: ACM, 2021: 1-7. 10.1145/3444685.3446308 |
29 | DAS N, SHANBHOGUE M, CHEN S, et al. Keeping the bad guys out: protecting and vaccinating deep learning with JPEG compression [EB/OL]. [2017-05-08]. . 10.1145/3219819.3219910 |
30 | GUO C, RANA M, CISSE M, et al. Coutering adbersarial images using input transformation [EB/OL]. [2018-01-25]. . |
31 | HINTON G E, VINYALS O, DEAN J, et al. Distilling the knowledge in a neural network [EB/OL]. [2015-03-09]. . |
32 | LIN Y K, WANG C F, CHANG C Y, et al. An efficient framework for counting pedestrians crossing a line using low-cost devices: the benefits of distilling the knowledge in a neural network [J]. Multimedia Tools and Applications, 2021, 80(3): 4037-4051. 10.1007/s11042-020-09276-9 |
33 | LEE H, HAN S, LEE J, et al. Generative adversarial trainer: defense to adversarial perturbations with GAN [EB/OL]. [2017-05-09]. . |
34 | ZHOU J, LIANG C, CHEN J. Manifold projection for adversarial defense on face recognition[C]// Proceedings of the 2020 European Conference on Computer Vision. Cham: Springer, 2020: 288-305. 10.1007/978-3-030-58577-8_18 |
35 | LIU X, LI Y, WU C, et al. Adv-BNN: improved adversarial defense through robust Bayesian neural network [EB/OL]. [2018-10-01]. . |
36 | WANG F, JIANG M, QIAN C, et al. Residual attention network for image classification [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3156-3164. 10.1109/cvpr.2017.683 |
37 | WANG F, JIANG M, QIAN C, et al. Residual attention network for image classification [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3156-3164. 10.1109/cvpr.2017.683 |
38 | WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks [C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7794-7803. 10.1109/cvpr.2018.00813 |
39 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database [C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. 10.1109/cvpr.2009.5206848 |
40 | KINGMA D, BA J. ADAM: a method for stochastic optimization [EB/OL]. [2014-12-01]. . |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[3] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[4] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. |
[5] | Zexin XU, Lei YANG, Kangshun LI. Shorter long-sequence time series forecasting model [J]. Journal of Computer Applications, 2024, 44(6): 1824-1831. |
[6] | Rong HUANG, Junjie SONG, Shubo ZHOU, Hao LIU. Image aesthetic quality evaluation method based on self-supervised vision Transformer [J]. Journal of Computer Applications, 2024, 44(4): 1269-1276. |
[7] | Yang LIU, Rong LIU, Ke FANG, Xinyue ZHANG, Guangxu WANG. Video super-resolution reconstruction network based on frame straddling optical flow [J]. Journal of Computer Applications, 2024, 44(4): 1277-1284. |
[8] | Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN. Domain transfer intrusion detection method for unknown attacks on industrial control systems [J]. Journal of Computer Applications, 2024, 44(4): 1158-1165. |
[9] | Jie WANG, Hua MENG. Image classification algorithm based on overall topological structure of point cloud [J]. Journal of Computer Applications, 2024, 44(4): 1107-1113. |
[10] | Sunjie YU, Hui ZENG, Shiyu XIONG, Hongzhou SHI. Incentive mechanism for federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(2): 344-352. |
[11] | Ziqi HUANG, Jianpeng HU. Entity category enhanced nested named entity recognition in automotive domain [J]. Journal of Computer Applications, 2024, 44(2): 377-384. |
[12] | Xinran LUO, Tianrui LI, Zhen JIA. Chinese medical named entity recognition based on self-attention mechanism and lexicon enhancement [J]. Journal of Computer Applications, 2024, 44(2): 385-392. |
[13] | Liqing QIU, Xiaopan SU. Personalized multi-layer interest extraction click-through rate prediction model [J]. Journal of Computer Applications, 2024, 44(11): 3411-3418. |
[14] | Xingyao YANG, Hongtao SHEN, Zulian ZHANG, Jiong YU, Jiaying CHEN, Dongxiao WANG. Sequential recommendation based on hierarchical filter and temporal convolution enhanced self-attention network [J]. Journal of Computer Applications, 2024, 44(10): 3090-3096. |
[15] | Yanbo LI, Qing HE, Shunyi LU. Aspect sentiment triplet extraction integrating semantic and syntactic information [J]. Journal of Computer Applications, 2024, 44(10): 3275-3280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||