Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (5): 1391-1397.DOI: 10.11772/j.issn.1001-9081.2021030459
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Daili CHEN1,2, Guoliang XU1,2()
Received:
2021-03-26
Revised:
2021-06-22
Accepted:
2021-06-23
Online:
2022-06-11
Published:
2022-05-10
Contact:
Guoliang XU
About author:
CHEN Daili, born in 1996, M. S. candidate. Her research interests include computer vision.通讯作者:
许国良
作者简介:
陈代丽(1996—),女,四川宜宾人,硕士研究生,主要研究方向:计算机视觉CLC Number:
Daili CHEN, Guoliang XU. Cross-domain person re-identification method based on attention mechanism with learning intra-domain variance[J]. Journal of Computer Applications, 2022, 42(5): 1391-1397.
陈代丽, 许国良. 基于注意力机制学习域内变化的跨域行人重识别方法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1391-1397.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021030459
方法 | DukeMTMC-reID→ Market-1501 | Market-1501→DukeMTMC-reID | ||
---|---|---|---|---|
mAP | Rank-1 | mAP | Rank-1 | |
Baseline | 20.2 | 45.6 | 19.4 | 48.7 |
Baseline+GFB | 47.9 | 78.6 | 43.4 | 65.8 |
Baseline+RAB | 49.5 | 78.9 | 44.3 | 66.4 |
Baseline+GFB+RAB | 49.5 | 80.1 | 44.2 | 67.7 |
Tab. 1 Performance comparison of different branches
方法 | DukeMTMC-reID→ Market-1501 | Market-1501→DukeMTMC-reID | ||
---|---|---|---|---|
mAP | Rank-1 | mAP | Rank-1 | |
Baseline | 20.2 | 45.6 | 19.4 | 48.7 |
Baseline+GFB | 47.9 | 78.6 | 43.4 | 65.8 |
Baseline+RAB | 49.5 | 78.9 | 44.3 | 66.4 |
Baseline+GFB+RAB | 49.5 | 80.1 | 44.2 | 67.7 |
方法 | DukeMTMC-reID → Market-1501 | Market-1501 → DukeMTMC-reID | ||||||
---|---|---|---|---|---|---|---|---|
Rank-1 | Rank-5 | Rank-10 | mAP | Rank-1 | Rank-5 | Rank-10 | mAP | |
LOMO | 27.2 | 41.6 | 49.1 | 8.0 | 12.3 | 21.3 | 26.6 | 4.8 |
BoW | 35.8 | 52.4 | 60.3 | 14.8 | 17.1 | 28.8 | 34.9 | 8.3 |
SSG | 80.0 | 90.0 | 92.4 | 58.3 | 73.0 | 80.6 | 83.2 | 53.4 |
MAR | 67.7 | 81.9 | — | 40.0 | 67.1 | 79.8 | — | 48.0 |
SPGAN | 51.5 | 70.1 | 76.8 | 22.8 | 41.1 | 56.6 | 63.0 | 22.3 |
PTGAN | 38.6 | — | 66.7 | — | 27.4 | — | 50.7 | — |
CamStyle | 58.8 | 78.2 | 84.3 | 27.4 | 48.4 | 62.5 | 68.9 | 25.1 |
CSGAN | 61.9 | 78.8 | 84.4 | 29.7 | 47.8 | 63.5 | 67.2 | 26.3 |
ECN | 75.1 | 78.8 | 84.0 | 43.0 | 63.3 | 75.8 | 80.4 | 40.4 |
D-MMD | 70.6 | 87.0 | 90.2 | 48.8 | 63.5 | 78.8 | 83.9 | 46.0 |
ICE | 90.8 | 95.8 | 97.2 | 73.8 | 80.2 | 88.5 | 91.6 | 66.4 |
本文方法 | 80.1 | 91.1 | 93.9 | 49.5 | 67.7 | 79.1 | 82.5 | 44.2 |
Tab. 2 Performance comparison of different methods on Market-1501 and DukeMTMC-reID
方法 | DukeMTMC-reID → Market-1501 | Market-1501 → DukeMTMC-reID | ||||||
---|---|---|---|---|---|---|---|---|
Rank-1 | Rank-5 | Rank-10 | mAP | Rank-1 | Rank-5 | Rank-10 | mAP | |
LOMO | 27.2 | 41.6 | 49.1 | 8.0 | 12.3 | 21.3 | 26.6 | 4.8 |
BoW | 35.8 | 52.4 | 60.3 | 14.8 | 17.1 | 28.8 | 34.9 | 8.3 |
SSG | 80.0 | 90.0 | 92.4 | 58.3 | 73.0 | 80.6 | 83.2 | 53.4 |
MAR | 67.7 | 81.9 | — | 40.0 | 67.1 | 79.8 | — | 48.0 |
SPGAN | 51.5 | 70.1 | 76.8 | 22.8 | 41.1 | 56.6 | 63.0 | 22.3 |
PTGAN | 38.6 | — | 66.7 | — | 27.4 | — | 50.7 | — |
CamStyle | 58.8 | 78.2 | 84.3 | 27.4 | 48.4 | 62.5 | 68.9 | 25.1 |
CSGAN | 61.9 | 78.8 | 84.4 | 29.7 | 47.8 | 63.5 | 67.2 | 26.3 |
ECN | 75.1 | 78.8 | 84.0 | 43.0 | 63.3 | 75.8 | 80.4 | 40.4 |
D-MMD | 70.6 | 87.0 | 90.2 | 48.8 | 63.5 | 78.8 | 83.9 | 46.0 |
ICE | 90.8 | 95.8 | 97.2 | 73.8 | 80.2 | 88.5 | 91.6 | 66.4 |
本文方法 | 80.1 | 91.1 | 93.9 | 49.5 | 67.7 | 79.1 | 82.5 | 44.2 |
1 | LI Y, WU Z Y, KARANAM S, et al. Real-world re-identification in an airport camera network [C]// Proceedings of the 2014 International Conference on Distributed Smart Cameras. New York: ACM, 2014: 1-6. 10.1145/2659021.2659039 |
2 | LUO C C, SONG C F, ZHANG Z X. Generalizing person re-identification by camera-aware invariance learning and cross-domain mixup [C]// Proceedings of the 2020 16th European Conference on Computer Vision, LNCS 12360. Cham: Springer, 2020: 224-241. |
3 | FU Y, WEI Y C, WANG G S, et al. Self-similarity grouping: a simple unsupervised cross domain adaptation approach for person re-identification [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6111-6120. 10.1109/iccv.2019.00621 |
4 | YU H X, ZHENG W S, WU A, et al. Unsupervised person re-identification by soft multi-label learning [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2148-2157. 10.1109/cvpr.2019.00225 |
5 | DENG W J, ZHENG L, YE Q X, et al. Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 994-1003. 10.1109/cvpr.2018.00110 |
6 | WEI L H, ZHANG S L, GAO W, et al. Person transfer GAN to bridge domain gap for person re-identification [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 79-88. 10.1109/cvpr.2018.00016 |
7 | ZHANG W Y, ZHU L, LU L. Improving the style adaptation for unsupervised cross-domain person re-identification [C]// Proceedings of the 2020 International Joint Conference on Neural Networks. Piscataway: IEEE. 2020: 1-8. 10.1109/ijcnn48605.2020.9207712 |
8 | ZHONG Z, ZHENG L, LUO Z M, et al. Invariance matters: exemplar memory for domain adaptive person re-identification [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 598-607. 10.1109/cvpr.2019.00069 |
9 | LI Y Y, YAO H T, XU C S. Intra-domain Consistency Enhancement for Unsupervised Person Re-identification [J]. IEEE Transactions on Multimedia, 2021, 24: 415-425. 10.1109/tmm.2021.3052354 |
10 | WANG J Y, ZHU X T, GONG S G, et al. Transferable joint attribute-identity deep learning for unsupervised person re-identification [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2275-2284. 10.1109/cvpr.2018.00242 |
11 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift [C]// Proceedings of the 2015 32nd International Conference on Machine Learning. New York: ACM, 2015: 448-456. |
12 | HUANG X, BELONGIE S. Arbitrary style transfer in real-time with adaptive instance normalization [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1510-1519. 10.1109/iccv.2017.167 |
13 | PAN X G, LUO P, SHI J P, et al. Two at once: enhancing learning and generalization capacities via IBN-Net [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11208. Cham: Springer, 2018: 484-500. |
14 | WOO S Y, PARK J C, LEE J-Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
15 | 李佳宾,李学伟,刘宏哲,等.基于局部特征关联与全局注意力机制的行人重识别[J].计算机工程,2022,48(1):245-252. 10.1155/2022/6041828 |
LI J B, LI X W, LIU H Z, et al. Person recognition based on local features relation and global attention mechanism [J]. Computer Engineering, 2022, 48(1): 245-252. 10.1155/2022/6041828 | |
16 | HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification [EB/OL]. [2020-12-13]. . |
17 | 廖华年,徐新.基于注意力机制的跨分辨率行人重识别[J].北京航空航天大学学报,2021,47(3):605-612. 10.1109/icpr48806.2021.9413309 |
LIAO H N, XU X Cross-resolution person re-identification based on attention mechanism [J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(3): 605-612. 10.1109/icpr48806.2021.9413309 | |
18 | LIN Y T, XIE L X, WU Y, et al. Unsupervised person re-identification via softened similarity learning [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 3387-3396. 10.1109/cvpr42600.2020.00345 |
19 | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image to-image translation using cycle-consistent adversarial networks [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2242-2251. 10.1109/iccv.2017.244 |
20 | ZHONG Z, ZHENG L, ZHENG Z D, et al. Camera style adaptation for person reidentification [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5157-5166. 10.1109/cvpr.2018.00541 |
21 | ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: a benchmark [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1116-1124. 10.1109/iccv.2015.133 |
22 | ZHENG Z D, ZHENG L, YANG Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 3774-3782. 10.1109/iccv.2017.405 |
23 | RISTANI E, SOLERA F, ZOU R S, et al. Performance measures and a data set for multi-target, multi-camera tracking [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9914. Cham: Springer, 2016: 17-35. |
24 | LIAO S C, HU Y, ZHU X Y, et al. Person re-identification by local maximal occurrence representation and metric learning [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 2197-2206. 10.1109/cvpr.2015.7298832 |
25 | MEKHAZNI D, BHUIYAN A, ESKANDER G, et al. Unsupervised domain adaptation in the dissimilarity space for person re-identification [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12372. Cham: Springer, 2020: 159-174. |
26 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization [J]. International Journal of Computer Vision, 2020, 128(2): 336-359. 10.1007/s11263-019-01228-7 |
[1] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[4] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. |
[5] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[6] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[7] | Cui WANG, Miaolei DENG, Dexian ZHANG, Lei LI, Xiaoyan YANG. Review of end-to-end person search algorithms based on images [J]. Journal of Computer Applications, 2024, 44(8): 2544-2550. |
[8] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[9] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[10] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[11] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[12] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[13] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[14] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[15] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||