Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (10): 3077-3085.DOI: 10.11772/j.issn.1001-9081.2022091438
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Zixing YU1, Shaojun QU1(), Xin HE2, Zhuo WANG1
Received:
2022-09-29
Revised:
2022-12-06
Accepted:
2022-12-12
Online:
2023-03-23
Published:
2023-10-10
Contact:
Shaojun QU
About author:
YU Zixing, born in 1997, M. S. candidate. His research interests include computer vision, deep learning.Supported by:
通讯作者:
瞿绍军
作者简介:
虞资兴(1997—),男,湖南株洲人,硕士研究生,CCF会员,主要研究方向:计算机视觉、深度学习基金资助:
CLC Number:
Zixing YU, Shaojun QU, Xin HE, Zhuo WANG. High-low dimensional feature guided real-time semantic segmentation network[J]. Journal of Computer Applications, 2023, 43(10): 3077-3085.
虞资兴, 瞿绍军, 何鑫, 王卓. 高低维特征引导的实时语义分割网络[J]. 《计算机应用》唯一官方网站, 2023, 43(10): 3077-3085.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022091438
名称 | 操作 | 输出尺寸 |
---|---|---|
输入 | 18-layer | 1 024×1 024 |
Conv | 512×512 | |
Pooling | 256×256 | |
Res1 | 256×256 | |
Res2 | 128×128 | |
Res3 | 64×64 | |
Res4 | 32×32 |
Tab. 1 Detail structure of ResNet-18
名称 | 操作 | 输出尺寸 |
---|---|---|
输入 | 18-layer | 1 024×1 024 |
Conv | 512×512 | |
Pooling | 256×256 | |
Res1 | 256×256 | |
Res2 | 128×128 | |
Res3 | 64×64 | |
Res4 | 32×32 |
输入 | 操作 | 卷积核大小 | 输出通道大小 | 步长 | 输出尺寸 |
---|---|---|---|---|---|
Stage1 | Conv2d | 7 | 64 | 2 | 512×512 |
Stage2 | Conv2d | 3 | 64 | 2 | 256×256 |
Stage3 | Conv2d | 3 | 64 | 2 | 128×128 |
Stage4 | Conv2d | 1 | 128 | 1 | 128×128 |
Tab. 2 Detail structure of detail branch
输入 | 操作 | 卷积核大小 | 输出通道大小 | 步长 | 输出尺寸 |
---|---|---|---|---|---|
Stage1 | Conv2d | 7 | 64 | 2 | 512×512 |
Stage2 | Conv2d | 3 | 64 | 2 | 256×256 |
Stage3 | Conv2d | 3 | 64 | 2 | 128×128 |
Stage4 | Conv2d | 1 | 128 | 1 | 128×128 |
分割模型 | UP | HLFGM | AVG | PPM | PPGM | 参数量/MB | mIoU/% | 帧率/(frame·s-1) |
---|---|---|---|---|---|---|---|---|
BiSeNet | √ | √ | 51.35 | 74.91 | 83.0 | |||
√ | √ | 50.28 | 75.21 | 79.0 | ||||
√ | √ | 50.35 | 76.25 | 76.0 | ||||
HLFGNet | √ | √ | 51.14 | 75.10 | 71.0 | |||
√ | √ | 50.29 | 76.01 | 78.0 | ||||
√ | √ | 50.53 | 76.67 | 75.0 |
Tab. 3 Performance validation on Cityscapes validation set under different settings
分割模型 | UP | HLFGM | AVG | PPM | PPGM | 参数量/MB | mIoU/% | 帧率/(frame·s-1) |
---|---|---|---|---|---|---|---|---|
BiSeNet | √ | √ | 51.35 | 74.91 | 83.0 | |||
√ | √ | 50.28 | 75.21 | 79.0 | ||||
√ | √ | 50.35 | 76.25 | 76.0 | ||||
HLFGNet | √ | √ | 51.14 | 75.10 | 71.0 | |||
√ | √ | 50.29 | 76.01 | 78.0 | ||||
√ | √ | 50.53 | 76.67 | 75.0 |
α | mIoU/% | α | mIoU/% |
---|---|---|---|
1.0 | 75.82 | 0.5 | 76.51 |
0.9 | 75.64 | 0.4 | 76.42 |
0.8 | 76.40 | 0.3 | 76.29 |
0.7 | 76.67 | 0.0 | 63.80 |
0.6 | 76.52 |
Tab. 4 Weighting coefficient experiment results
α | mIoU/% | α | mIoU/% |
---|---|---|---|
1.0 | 75.82 | 0.5 | 76.51 |
0.9 | 75.64 | 0.4 | 76.42 |
0.8 | 76.40 | 0.3 | 76.29 |
0.7 | 76.67 | 0.0 | 63.80 |
0.6 | 76.52 |
模块 | 1×1 | 2×2 | 3×3 | 6×6 | 参数量/MB | mIoU/% | 帧率/(frame·s-1) |
---|---|---|---|---|---|---|---|
PPGM-1 | √ | √ | √ | √ | 50.53 | 76.09 | 68.0 |
PPGM-2 | √ | √ | √ | 50.53 | 76.88 | 70.0 | |
PPGM-3 | √ | √ | 50.53 | 76.67 | 75.0 | ||
PPGM-4 | √ | 50.53 | 75.51 | 76.0 | |||
PPM | 50.29 | 76.01 | 78.0 |
Tab. 5 Comparison experiment results of Guide operation on feature maps with different scales
模块 | 1×1 | 2×2 | 3×3 | 6×6 | 参数量/MB | mIoU/% | 帧率/(frame·s-1) |
---|---|---|---|---|---|---|---|
PPGM-1 | √ | √ | √ | √ | 50.53 | 76.09 | 68.0 |
PPGM-2 | √ | √ | √ | 50.53 | 76.88 | 70.0 | |
PPGM-3 | √ | √ | 50.53 | 76.67 | 75.0 | ||
PPGM-4 | √ | 50.53 | 75.51 | 76.0 | |||
PPM | 50.29 | 76.01 | 78.0 |
网络 | 输入尺寸 | 骨干网络 | 参数量/MB | mIoU/% | 帧率/(frame·s-1) | |
---|---|---|---|---|---|---|
验证集 | 测试集 | |||||
ICNet | 1 024×2 048 | PSPNet50 | 28.30 | 71.70 | 69.50 | 15.2 |
DFANet-A | 1 024×1 024 | Xception | 7.80 | 71.90 | 71.30 | 50.0 |
FasterSeg | 1 024×2 048 | 无 | 4.40 | 73.10 | 71.50 | 94.2 |
DF2-Seg2 | 1 024×2 048 | DF2 | 56.55 | 76.90 | 75.30 | 28.2 |
STDC2-Seg75 | 768×1 536 | STDC | 61.67 | 77.00 | 76.80 | 48.9 |
STDC2-Seg75* | 768×1 536 | STDC | 61.67 | 74.20 | 73.20 | 48.9 |
BiSeNet | 1 024×2 048 | ResNet18 | 51.35 | 74.91 | 74.50 | 83.0 |
BiSeNet V2 | 1 024×2 048 | 无 | 20.16 | 74.20 | 72.90 | 83.4 |
BASeNet | 1 024×2 048 | 无 | — | 77.50 | 74.90 | 47.2 |
BiSeNet V2-L | 512×1 024 | 无 | 123.75 | 75.80 | 75.30 | 23.6 |
HLFGNet | 1 024×2 048 | ResNet18 | 50.53 | 76.67 | 75.40 | 75.0 |
Tab. 6 Comparison of experimental results of different networks on Cityscapes dataset
网络 | 输入尺寸 | 骨干网络 | 参数量/MB | mIoU/% | 帧率/(frame·s-1) | |
---|---|---|---|---|---|---|
验证集 | 测试集 | |||||
ICNet | 1 024×2 048 | PSPNet50 | 28.30 | 71.70 | 69.50 | 15.2 |
DFANet-A | 1 024×1 024 | Xception | 7.80 | 71.90 | 71.30 | 50.0 |
FasterSeg | 1 024×2 048 | 无 | 4.40 | 73.10 | 71.50 | 94.2 |
DF2-Seg2 | 1 024×2 048 | DF2 | 56.55 | 76.90 | 75.30 | 28.2 |
STDC2-Seg75 | 768×1 536 | STDC | 61.67 | 77.00 | 76.80 | 48.9 |
STDC2-Seg75* | 768×1 536 | STDC | 61.67 | 74.20 | 73.20 | 48.9 |
BiSeNet | 1 024×2 048 | ResNet18 | 51.35 | 74.91 | 74.50 | 83.0 |
BiSeNet V2 | 1 024×2 048 | 无 | 20.16 | 74.20 | 72.90 | 83.4 |
BASeNet | 1 024×2 048 | 无 | — | 77.50 | 74.90 | 47.2 |
BiSeNet V2-L | 512×1 024 | 无 | 123.75 | 75.80 | 75.30 | 23.6 |
HLFGNet | 1 024×2 048 | ResNet18 | 50.53 | 76.67 | 75.40 | 75.0 |
类别 | FasterSeg | HLFGNet | BiSeNet |
---|---|---|---|
平均值 | 71.45 | 75.43 | 74.56 |
road | 98.02 | 98.27 | 98.20 |
sidewalk | 83.48 | 83.74 | 83.17 |
building | 91.13 | 91.82 | 91.62 |
wall | 39.13 | 45.19 | 44.99 |
fence | 48.70 | 52.77 | 50.69 |
pole | 58.60 | 61.53 | 61.99 |
traffic light | 66.73 | 71.04 | 71.29 |
traffic sign | 71.60 | 74.21 | 74.63 |
vegetation | 92.33 | 92.81 | 92.78 |
terrain | 69.11 | 71.51 | 70.44 |
sky | 94.49 | 95.19 | 94.91 |
person | 81.47 | 83.63 | 83.40 |
rider | 61.78 | 66.09 | 66.19 |
car | 93.68 | 95.25 | 94.98 |
truck | 54.95 | 64.53 | 61.38 |
bus | 67.09 | 77.86 | 75.45 |
train | 61.11 | 72.14 | 67.03 |
motorcycle | 54.90 | 63.05 | 61.22 |
bicycle | 69.21 | 72.58 | 72.34 |
Tab. 7 Accuracy for each category on Cityscapes test set
类别 | FasterSeg | HLFGNet | BiSeNet |
---|---|---|---|
平均值 | 71.45 | 75.43 | 74.56 |
road | 98.02 | 98.27 | 98.20 |
sidewalk | 83.48 | 83.74 | 83.17 |
building | 91.13 | 91.82 | 91.62 |
wall | 39.13 | 45.19 | 44.99 |
fence | 48.70 | 52.77 | 50.69 |
pole | 58.60 | 61.53 | 61.99 |
traffic light | 66.73 | 71.04 | 71.29 |
traffic sign | 71.60 | 74.21 | 74.63 |
vegetation | 92.33 | 92.81 | 92.78 |
terrain | 69.11 | 71.51 | 70.44 |
sky | 94.49 | 95.19 | 94.91 |
person | 81.47 | 83.63 | 83.40 |
rider | 61.78 | 66.09 | 66.19 |
car | 93.68 | 95.25 | 94.98 |
truck | 54.95 | 64.53 | 61.38 |
bus | 67.09 | 77.86 | 75.45 |
train | 61.11 | 72.14 | 67.03 |
motorcycle | 54.90 | 63.05 | 61.22 |
bicycle | 69.21 | 72.58 | 72.34 |
模型 | 输入尺寸 | mIoU/% | 帧率/(frame·s-1) |
---|---|---|---|
SegNet | 720×960 | 60.10 | 4.6 |
ICNet | 720×960 | 67.10 | 34.5 |
ENet | 720×960 | 51.30 | 61.2 |
BiSeNet V2 | 720×960 | 70.80 | 81.9 |
BiSeNet | 720×960 | 67.50 | 115.0 |
HLFGNet | 720×960 | 70.90 | 96.2 |
Tab. 8 Comparison and analysis of different models on CamVid test set
模型 | 输入尺寸 | mIoU/% | 帧率/(frame·s-1) |
---|---|---|---|
SegNet | 720×960 | 60.10 | 4.6 |
ICNet | 720×960 | 67.10 | 34.5 |
ENet | 720×960 | 51.30 | 61.2 |
BiSeNet V2 | 720×960 | 70.80 | 81.9 |
BiSeNet | 720×960 | 67.50 | 115.0 |
HLFGNet | 720×960 | 70.90 | 96.2 |
1 | 罗会兰,张云. 基于深度网络的图像语义分割综述[J]. 电子学报, 2019, 47(10):2211-2220. 10.3969/j.issn.0372-2112.2019.10.024 |
LUO H L, ZHANG Y. A survey of image semantic segmentation based on deep network[J]. Acta Electronica Sinica, 2019, 47(10): 2211-2220. 10.3969/j.issn.0372-2112.2019.10.024 | |
2 | 张新明,李振云,郑颖. 融合Fisher准则和势函数的多阈值图像分割[J]. 计算机应用, 2012, 32(10):2843-2847. 10.3724/sp.j.1087.2012.02843 |
ZHANG X M, LI Z Y, ZHENG Y. Multi-threshold image segmentation based on combining Fisher criterion and potential function[J]. Journal of Computer Applications, 2012, 32(10): 2843-2847. 10.3724/sp.j.1087.2012.02843 | |
3 | 柳萍,阳爱民. 一种基于区域的彩色图像分割方法[J]. 计算机工程与应用, 2007, 43(6):37-39, 64. 10.3321/j.issn:1002-8331.2007.06.012 |
LIU P, YANG A M. A method of region-based color image segmentation[J]. Computer Engineering and Applications, 2007, 43(6): 37-39, 64. 10.3321/j.issn:1002-8331.2007.06.012 | |
4 | 李翠锦,瞿中. 基于深度学习的图像边缘检测算法综述[J]. 计算机应用, 2020, 40(11):3280-3288. |
LI C J, QU Z. Review of image edge detection algorithms based on deep learning[J]. Journal of Computer Applications, 2020, 40(11): 3280-3288. | |
5 | 宋杰,于裕,骆起峰. 基于RCF的跨层融合特征的边缘检测[J]. 计算机应用, 2020, 40(7):2053-2058. |
SONG J, YU Y, LUO Q F. Cross-layer fusion feature based on richer convolutional features for edge detection[J]. Journal of Computer Applications, 2020, 40(7): 2053-2058. | |
6 | 瞿绍军. 基于最优化理论的图像分割方法研究[D]. 长沙:湖南师范大学, 2018:32-66. |
QU S J. Research on image segmentation based on optimization theory[D]. Changsha: Hunan Normal University, 2018: 32-66. | |
7 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440. 10.1109/cvpr.2015.7298965 |
8 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. 10.1145/3065386 |
9 | 张鑫,姚庆安,赵健,等. 全卷积神经网络图像语义分割方法综述[J]. 计算机工程与应用, 2022, 58(8):45-57. 10.3778/j.issn.1002-8331.2109-0091 |
ZHANG X, YAO Q A, ZHAO J, et al. Image semantic segmentation based on fully convolutional neural network[J]. Computer Engineering and Applications, 2022, 58(8): 45-57. 10.3778/j.issn.1002-8331.2109-0091 | |
10 | ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239. 10.1109/cvpr.2017.660 |
11 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. 10.1109/tpami.2017.2699184 |
12 | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
13 | YU C, WANG J, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11217. Cham: Springer, 2018: 334-349. |
14 | LI X, YOU A, ZHU Z, et al. Semantic flow for fast and accurate scene parsing[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12346. Cham: Springer, 2020: 775-793. |
15 | CORDTS M, OMRAN M, RAMOS S, et al. The Cityscapes dataset for semantic urban scene understanding[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 3213-3223. 10.1109/cvpr.2016.350 |
16 | BROSTOW G J, SHOTTON J, FAUQUEUR J, et al. Segmentation and recognition using structure from motion point clouds[C]// Proceedings of 2008 the European Conference on Computer Vision, LNCS 5302. Berlin: Springer, 2008: 44-57. |
17 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL]. (2016-06-07) [2022-10-01].. 10.1109/tpami.2017.2699184 |
18 | CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017-12-05) [2022-10-24].. 10.1007/978-3-030-01234-2_49 |
19 | CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 801-818. 10.1007/978-3-030-01234-2_49 |
20 | PASZKE A, CHAURASIA A, KIM S, et al. ENet: a deep neural network architecture for real-time semantic segmentation[EB/OL]. (2016-06-07) [2022-04-10].. 10.48550/arXiv.1606.02147 |
21 | ZHAO H, QI X, SHEN X, et al. ICNet for real-time semantic segmentation on high-resolution images[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11207. Cham: Springer 2018: 418-434. |
22 | YU C, GAO C, WANG J, et al. BiSeNet V2: bilateral network with guided aggregation for real-time semantic segmentation[J]. International Journal of Computer Vision, 2021, 129(11): 3051-3068. 10.1007/s11263-021-01515-2 |
23 | FAN M, LAI S, HUANG J, et al. Rethinking BiSeNet for real-time semantic segmentation[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 9711-9720. 10.1109/cvpr46437.2021.00959 |
24 | PENG J, LIU Y, TANG S, et al. PP-LiteSeg: a superior real-time semantic segmentation model[EB/OL]. (2022-04-06) [2022-08-06].. |
25 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:7132-7141. 10.1109/cvpr.2018.00745 |
26 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
27 | FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3141-3149. 10.1109/cvpr.2019.00326 |
28 | WANG D, LI N, ZHOU Y, et al. Bilateral attention network for semantic segmentation[J]. IET Image Processing, 2021, 15(8): 1607-1616. 10.1049/ipr2.12129 |
29 | 文凯,唐伟伟,熊俊臣. 基于注意力机制和有效分解卷积的实时分割算法[J]. 计算机应用, 2022, 42(9):2659-266. |
WEN K, TANG W W, XIONG J C. Real-time segmentation algorithm based on attention mechanism and effective factorized convolution[J]. Journal of Computer Applications, 2022, 42(9): 2659-266. | |
30 | 吴琼,瞿绍军. 融合注意力机制的端到端的街道场景语义分割[J]. 小型微型计算机系统, 2023, 44(7):1514-1520. |
WU Q, QU S J. End-to-end semantic segmentation of street scene with attention mechanism[J]. Journal of Chinese Computer Systems, 2023, 44(7): 1514-1520. | |
31 | 欧阳柳,贺禧,瞿绍军. 全卷积注意力机制神经网络的图像语义分割 [J]. 计算机科学与探索, 2022, 16(5):1136-1145. 10.3778/j.issn.1673-9418.2105095 |
OU Y L, HE X, QU S J. Fully convolutional neural network with attention module for semantic segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1136-1145. 10.3778/j.issn.1673-9418.2105095 | |
32 | ZHANG X, DU B, WU Z, et al. LAANet: lightweight attention-guided asymmetric network for real-time semantic segmentation[J]. Neural Computing and Applications, 2022, 34(5): 3573-3587. 10.1007/s00521-022-06932-z |
33 | LIU J, XU X, SHI Y, et al. RELAXNet: residual efficient learning and attention expected fusion network for real-time semantic segmentation[J]. Neurocomputing, 2022, 474: 115-127. 10.1016/j.neucom.2021.12.003 |
34 | LI H, XIONG P, FAN H, et al. DFANet: deep feature aggregation for real-time semantic segmentation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9514-9523. 10.1109/cvpr.2019.00975 |
35 | HUANG Z, WEI Y, WANG X, et al. AlignSeg: feature-aligned segmentation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 550-557. |
36 | WU Y, JIANG J, HUANG Z, et al. FPANet: feature pyramid aggregation network for real-time semantic segmentation[J]. Applied Intelligence, 2022, 52(3): 3319-3336. 10.1007/s10489-021-02603-z |
37 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
38 | ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Object detectors emerge in deep scene CNNs[EB/OL]. (2015-04-15) [2022-05-12].. |
39 | 霍占强,贾海洋,乔应旭,等. 边界感知的实时语义分割网络[J]. 计算机工程与应用, 2022, 58(17):165-173. 10.3778/j.issn.1002-8331.2112-0247 |
HUO Z Q, JIA H Y, QIAO Y X, et al. Boundary-aware real-time semantic segmentation network[J]. Computer Engineering and Applications, 2022, 58(17): 165-173. 10.3778/j.issn.1002-8331.2112-0247 | |
40 | CHEN W, GONG X, LIU X, et al. FasterSeg: searching for faster real-time semantic segmentation[EB/OL]. (2020-01-16) [2022-06-14].. |
[1] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[4] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[5] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[6] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[7] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[8] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[9] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[10] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[11] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[12] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[13] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[14] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[15] | Mei WANG, Xuesong SU, Jia LIU, Ruonan YIN, Shan HUANG. Time series classification method based on multi-scale cross-attention fusion in time-frequency domain [J]. Journal of Computer Applications, 2024, 44(6): 1842-1847. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||