Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (2): 601-607.DOI: 10.11772/j.issn.1001-9081.2022010030
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Lingling TAO1,2, Bo LIU1,2(), Wenbo LI1,2, Xiping HE1,2
Received:
2022-01-11
Revised:
2022-04-05
Accepted:
2022-04-11
Online:
2022-04-28
Published:
2023-02-10
Contact:
Bo LIU
About author:
TAO Lingling, born in 1998, M. S. candidate. Her research interests include computer vision, image processing, generative adversarial network.Supported by:
陶玲玲1,2, 刘波1,2(), 李文博1,2, 何希平1,2
通讯作者:
刘波
作者简介:
陶玲玲(1998—),女,重庆人,硕士研究生,主要研究方向:计算机视觉、图像处理、生成对抗网络基金资助:
CLC Number:
Lingling TAO, Bo LIU, Wenbo LI, Xiping HE. Controllable face editing algorithm with closed-form solution[J]. Journal of Computer Applications, 2023, 43(2): 601-607.
陶玲玲, 刘波, 李文博, 何希平. 有闭解的可控人脸编辑算法[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 601-607.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022010030
属性名 | ProGAN | StyleGAN | StyleGAN2 |
---|---|---|---|
age | 1.00 | 0.40 | 0.60 |
hairstyle | 0.20 | 0.60 | 0.40 |
gender | 1.00 | 1.40 | 0.20 |
pose | 1.20 | 0.80 | 0.80 |
smile | 0.80 | 0.40 | 1.20 |
Tab.1 Values of parameter λ
属性名 | ProGAN | StyleGAN | StyleGAN2 |
---|---|---|---|
age | 1.00 | 0.40 | 0.60 |
hairstyle | 0.20 | 0.60 | 0.40 |
gender | 1.00 | 1.40 | 0.20 |
pose | 1.20 | 0.80 | 0.80 |
smile | 0.80 | 0.40 | 1.20 |
生成模型 | 属性名 | SeFa算法 | GANSpace算法 | 本文算法 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
IS | FID | MMD | IS | FID | MMD | IS | FID | MMD | ||
ProGAN | age | 1.96 | 0.69 | 0.24 | 2.00 | 1.40 | 0.59 | 2.04 | 0.66 | 0.24 |
hairstyle | 2.05 | 0.55 | 0.22 | 1.85 | 0.47 | 0.47 | 2.29 | 0.49 | 0.17 | |
gender | 2.02 | 0.73 | 0.24 | 2.00 | 1.40 | 0.59 | 2.27 | 0.69 | 0.19 | |
pose | 2.13 | 0.64 | 0.33 | 2.43 | 0.43 | 0.39 | 2.35 | 0.36 | 0.22 | |
smile | 2.07 | 0.62 | 0.25 | 1.85 | 0.91 | 0.24 | 2.21 | 0.65 | 0.25 | |
平均值 | 2.05 | 0.65 | 0.26 | 0.23 | 0.92 | 0.46 | 2.23 | 0.57 | 0.21 | |
StyleGAN | age | 1.92 | 0.60 | 0.27 | 1.63 | 2.45 | 0.86 | 2.17 | 0.74 | 0.23 |
hairsyle | 2.12 | 1.60 | 0.24 | 2.04 | 1.50 | 0.27 | 2.60 | 1.37 | 0.21 | |
gender | 2.03 | 0.62 | 0.27 | 1.55 | 2.22 | 0.80 | 2.50 | 0.76 | 0.35 | |
pose | 2.03 | 0.76 | 0.24 | 1.74 | 1.65 | 0.27 | 2.81 | 0.66 | 0.23 | |
smile | 2.05 | 0.62 | 0.25 | 2.11 | 0.85 | 0.16 | 2.23 | 0.74 | 0.20 | |
平均值 | 2.03 | 0.84 | 0.25 | 1.81 | 1.73 | 0.47 | 2.46 | 0.85 | 0.24 | |
StyleGAN2 | age | 2.50 | 0.77 | 0.30 | 1.97 | 0.67 | 0.40 | 2.51 | 0.67 | 0.26 |
hairstyle | 2.19 | 0.73 | 0.29 | 2.14 | 0.69 | 0.40 | 2.86 | 0.71 | 0.19 | |
gender | 2.12 | 0.66 | 0.30 | 2.37 | 0.71 | 0.36 | 3.05 | 0.76 | 0.21 | |
pose | 1.89 | 0.65 | 0.29 | 1.99 | 0.70 | 0.37 | 3.04 | 0.67 | 0.24 | |
smile | 2.26 | 0.70 | 0.30 | 1.99 | 0.69 | 0.38 | 2.45 | 0.60 | 0.21 | |
平均值 | 2.19 | 0.70 | 0.30 | 2.09 | 0.69 | 0.38 | 2.78 | 0.68 | 0.22 | |
总平均值 | 2.09 | 0.73 | 0.27 | 1.98 | 1.12 | 0.44 | 2.49 | 0.70 | 0.23 |
Tab.2 Quantitative comparison of images generated by pre-trained generation models
生成模型 | 属性名 | SeFa算法 | GANSpace算法 | 本文算法 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
IS | FID | MMD | IS | FID | MMD | IS | FID | MMD | ||
ProGAN | age | 1.96 | 0.69 | 0.24 | 2.00 | 1.40 | 0.59 | 2.04 | 0.66 | 0.24 |
hairstyle | 2.05 | 0.55 | 0.22 | 1.85 | 0.47 | 0.47 | 2.29 | 0.49 | 0.17 | |
gender | 2.02 | 0.73 | 0.24 | 2.00 | 1.40 | 0.59 | 2.27 | 0.69 | 0.19 | |
pose | 2.13 | 0.64 | 0.33 | 2.43 | 0.43 | 0.39 | 2.35 | 0.36 | 0.22 | |
smile | 2.07 | 0.62 | 0.25 | 1.85 | 0.91 | 0.24 | 2.21 | 0.65 | 0.25 | |
平均值 | 2.05 | 0.65 | 0.26 | 0.23 | 0.92 | 0.46 | 2.23 | 0.57 | 0.21 | |
StyleGAN | age | 1.92 | 0.60 | 0.27 | 1.63 | 2.45 | 0.86 | 2.17 | 0.74 | 0.23 |
hairsyle | 2.12 | 1.60 | 0.24 | 2.04 | 1.50 | 0.27 | 2.60 | 1.37 | 0.21 | |
gender | 2.03 | 0.62 | 0.27 | 1.55 | 2.22 | 0.80 | 2.50 | 0.76 | 0.35 | |
pose | 2.03 | 0.76 | 0.24 | 1.74 | 1.65 | 0.27 | 2.81 | 0.66 | 0.23 | |
smile | 2.05 | 0.62 | 0.25 | 2.11 | 0.85 | 0.16 | 2.23 | 0.74 | 0.20 | |
平均值 | 2.03 | 0.84 | 0.25 | 1.81 | 1.73 | 0.47 | 2.46 | 0.85 | 0.24 | |
StyleGAN2 | age | 2.50 | 0.77 | 0.30 | 1.97 | 0.67 | 0.40 | 2.51 | 0.67 | 0.26 |
hairstyle | 2.19 | 0.73 | 0.29 | 2.14 | 0.69 | 0.40 | 2.86 | 0.71 | 0.19 | |
gender | 2.12 | 0.66 | 0.30 | 2.37 | 0.71 | 0.36 | 3.05 | 0.76 | 0.21 | |
pose | 1.89 | 0.65 | 0.29 | 1.99 | 0.70 | 0.37 | 3.04 | 0.67 | 0.24 | |
smile | 2.26 | 0.70 | 0.30 | 1.99 | 0.69 | 0.38 | 2.45 | 0.60 | 0.21 | |
平均值 | 2.19 | 0.70 | 0.30 | 2.09 | 0.69 | 0.38 | 2.78 | 0.68 | 0.22 | |
总平均值 | 2.09 | 0.73 | 0.27 | 1.98 | 1.12 | 0.44 | 2.49 | 0.70 | 0.23 |
1 | LIU M, DING Y K, XIA M, et al. STGAN: a unified selective transfer network for arbitrary image attribute editing[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3668-3677. 10.1109/cvpr.2019.00379 |
2 | LI T T, QIAN R H, DONG C, et al. BeautyGAN: instance-level facial makeup transfer with deep generative adversarial network[C]// Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 645-653. 10.1145/3240508.3240618 |
3 | KLUM S, HANH, JAIN A K, et al. Sketch based face recognition: forensic vs. composite sketches[C]// Proceedings of the 2013 International Conference on Biometrics. Piscataway: IEEE, 2013: 1-8. 10.1109/icb.2013.6612993 |
4 | 陈佛计,朱枫,吴清潇,等. 生成对抗网络及其在图像生成中的应用研究综述[J]. 计算机学报, 2021, 44(2):347-369. 10.11897/SP.J.1016.2021.00347 |
CHEN F J, ZHU F, WU Q X, et al. A survey about image generation with generative adversarial nets[J]. Chinese Journal of Computers, 2021, 44(2): 347-369. 10.11897/SP.J.1016.2021.00347 | |
5 | ZHOU S C, XIAO T H, YANG Y, et al. GeneGAN: learning object transfiguration and attribute subspace from unpaired data[C]// Proceedings of the 2017 British Machine Vision Conference. Durham: BMVA Press, 2017: No.111. 10.5244/c.31.111 |
6 | HE Z L, ZUO W M, KAN M N, et al. AttGAN: facial attribute editing by only changing what you want[J]. IEEE Transactions on Image Processing, 2019, 28(11): 5464-5478. 10.1109/tip.2019.2916751 |
7 | MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL]. (2014-11-06) [2021-09-10].. |
8 | KARRAS T, LAINE S, AILA T. A style-based generator architecture for generative adversarial networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(12): 4217-4228. 10.1109/tpami.2020.2970919 |
9 | KARRAS T, AILA T, LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation[EB/OL]. (2018-02-26) [2021-09-10].. |
10 | KARRAS T, LAINE S, AITTALA M, et al. Analyzing and improving the image quality of StyleGAN[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8107-8116. 10.1109/cvpr42600.2020.00813 |
11 | HÄRKÖNEN E, HERTZMANN A, LEHTINEN J, et al. GANSpace: discovering interpretable GAN controls[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020:9841-9850. |
12 | 胡铭菲,左信,刘建伟. 深度生成模型综述[J]. 自动化学报, 2022, 48(1): 40-74. 10.16383/j.aas.c190866 |
HU M F, ZUO X, LIU J W. Survey on deep generative model[J]. Acta Automatic Sinica, 2022, 48(1): 40-74. 10.16383/j.aas.c190866 | |
13 | GREGOR K, DANIHELKA I, GRAVES A, et al. DRAW: a recurrent neural network for image generation[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 1462-1471. |
14 | PAGNONIA, LIU K, LI S Y. Conditional variational autoencoder for neural machine translation[EB/OL]. (2018-12-11) [2021-09-10].. |
15 | BROCK A, DONAHUE J, SIMONYAN K. Large scale GAN training for high fidelity natural image synthesis[EB/OL]. (2019-02-25) [2021-09-10].. |
16 | SHOSHAN A, BHONKER N, KVIATKOVSKY I, et al. GAN-Control: explicitly controllable GANs[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 14063-14073. 10.1109/iccv48922.2021.01382 |
17 | DENG Y, YANG J L, CHEN D, et al. Disentangled and controllable face image generation via 3D imitative-contrastive learning[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5153-5162. 10.1109/cvpr42600.2020.00520 |
18 | 郭茂祖,杨倩楠,赵玲玲. 基于条件Wassertein生成对抗网络的图像生成[J]. 计算机应用, 2021, 41(5):1432-1437. 10.11772/j.issn.1001-9081.2020071138 |
GUO M Z, YANG Q N, ZHAO L L. Image generation based on conditional-Wassertein generative adversarial network[J]. Journal of Computer Applications, 2021, 41(5): 1432-1437. 10.11772/j.issn.1001-9081.2020071138 | |
19 | GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 5769-5779. |
20 | CHEN X, DUAN Y, HOUTHOOFT R, et al. InfoGAN: interpretable representation learning by information maximizing generative adversarial nets[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016: 2180-2188. |
21 | ODENA A, OLAH C, SHLENS J. Conditional image synthesis with auxiliary classifier GANs[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 2642-2651. |
22 | YANG C Y, SHEN Y J, ZHOU B L. Semantic hierarchy emerges in deep generative representations for scene synthesis[J]. International Journal of Computer Vision, 2021, 129(5): 1451-1466. 10.1007/s11263-020-01429-5 |
23 | SHEN Y J, YANG C Y, TANG X O, et al. InterFaceGAN: interpreting the disentangled face representation learned by GANs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 2004-2018. 10.1109/tpami.2020.3034267 |
24 | UPCHURCH P, GARDNER J, PLEISS G, et al. Deep feature interpolation for image content changes[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6090-6099. 10.1109/cvpr.2017.645 |
25 | SHEN Y J, ZHOU B L. Closed-form factorization of latent semantics in GANs[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 1532-1540. 10.1109/cvpr46437.2021.00158 |
26 | VOYNOV A, BABENKO A. Unsupervised discovery of interpretable directions in the GAN latent space[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 9786-9796. |
27 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
28 | LIU Z W, LUO P, WANG X G, et al. Deep learning face attributes in the wild[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 3730-3738. 10.1109/iccv.2015.425 |
29 | SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2016: 2234-2242. |
30 | HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6629-6640. 10.48550/arXiv.1706.08500 |
31 | BIŃKOWSKI M, SUTHERLAND D J, ARBEL M, et al. Demystifying MMD GANs[EB/OL]. (2021-01-14) [2021-09-10].. |
[1] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[2] | Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN. Domain transfer intrusion detection method for unknown attacks on industrial control systems [J]. Journal of Computer Applications, 2024, 44(4): 1158-1165. |
[3] | Sunjie YU, Hui ZENG, Shiyu XIONG, Hongzhou SHI. Incentive mechanism for federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(2): 344-352. |
[4] | Hui ZHOU, Yuling CHEN, Xuewei WANG, Yangwen ZHANG, Jianjiang HE. Deep shadow defense scheme of federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(1): 223-232. |
[5] | Anyang LIU, Huaici ZHAO, Wenlong CAI, Zechao XU, Ruideng XIE. Adaptive image deblurring generative adversarial network algorithm based on active discrimination mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2288-2294. |
[6] | Shaoquan CHEN, Jianping CAI, Lan SUN. Differential privacy generative adversarial network algorithm with dynamic gradient threshold clipping [J]. Journal of Computer Applications, 2023, 43(7): 2065-2072. |
[7] | Xin JIN, Yangchuan LIU, Yechen ZHU, Zijian ZHANG, Xin GAO. Sinogram inpainting for sparse-view cone-beam computed tomography image reconstruction based on residual encoder-decoder generative adversarial network [J]. Journal of Computer Applications, 2023, 43(6): 1950-1957. |
[8] | Jinwen GUO, Xinghua MA, Gongning LUO, Wei WANG, Yang CAO, Kuanquan WANG. Guidewire artifact removal method of structure-enhanced IVOCT based on Transformer [J]. Journal of Computer Applications, 2023, 43(5): 1596-1605. |
[9] | Jiagao WU, Shiwen ZHANG, Yudong JIANG, Linfeng LIU. Social-interaction GAN for pedestrian trajectory prediction based on state-refinement long short-term memory and attention mechanism [J]. Journal of Computer Applications, 2023, 43(5): 1565-1570. |
[10] | Xiaoyu FAN, Suzhen LIN, Yanbo WANG, Feng LIU, Dawei LI. Reconstruction algorithm for highly undersampled magnetic resonance images based on residual graph convolutional neural network [J]. Journal of Computer Applications, 2023, 43(4): 1261-1268. |
[11] | Hao WANG, Zicheng WANG, Chao ZHANG, Yunsheng MA. Generative adversarial network based data uncertainty quantification method [J]. Journal of Computer Applications, 2023, 43(4): 1094-1101. |
[12] | Chunyong YIN, Liwen ZHOU. Unsupervised time series anomaly detection model based on re-encoding [J]. Journal of Computer Applications, 2023, 43(3): 804-811. |
[13] | Shaokang XU, Zhancheng ZHANG, Haonan YAO, Zhiwei ZOU, Baocheng ZHANG. 2D/3D spine medical image real-time registration method based on pose encoder [J]. Journal of Computer Applications, 2023, 43(2): 589-594. |
[14] | Li’an ZHU, Hong ZHANG. Nonhomogeneous image dehazing based on dual-branch conditional generative adversarial network [J]. Journal of Computer Applications, 2023, 43(2): 567-574. |
[15] | Gang CHEN, Yongwei LIAO, Zhenguo YANG, Wenying LIU. Image inpainting algorithm of multi-scale generative adversarial network based on multi-feature fusion [J]. Journal of Computer Applications, 2023, 43(2): 536-544. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||